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Modern statistical methods rely heavily on nonparametric techniques for comparing two

or more populations. These techniques generate p-values without making any

distributional assumptions about the populations being compared. They rely, however, on

asymptotic theory that is valid only if the sample sizes are reasonably large and well

balanced across the populations. For small, sparse, skewed, or heavily tied data, the

asymptotic theory may not be valid. See Agresti and Yang [5] for some empirical results,

and Read and Cressie [31] for a more theoretical discussion.

One way to make valid statistical inferences in the presence of small, sparse or unbalanced

data is to compute exact p-values and confidence intervals, based on the permutational

distribution of the test statistic. This approach was first proposed by R. A. Fisher [11]

and has been used extensively for the single 2 × 2 contingency table. Previously exact

tests were rarely attempted for tables of higher dimension than 2 × 2, primarily because of

the formidable computing problems involved in their execution. In recent years, however,

the easy availability of immense quantities of computing power combined with many new,

fast and efficient algorithms for exact permutational inference have revolutionized our

thinking about what is computationally feasible. Problems that would previously have

taken several hours or even days to solve now take only a few minutes. Exact inference is
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now a practical proposition and has been incorporated into standard statistical software

packages.

In the present paper we present a unified framework for exact inference, anchored in the

permutation principle. We demonstrate that, for a very broad class of nonparametric

problems, such inference can be accomplished by permuting the entries in a contingency

table subject to fixed margins. Exact and Monte Carlo algorithms for solving these

permutation problems are referenced. We then apply these algorithms to several data sets.

Both exact and asymptotic p- values are computed for these data so that one may assess

the accuracy of the asymptotic methods. Finally we discuss the availability of software

and cite an internet resource for performing exact permutational inference.

Exact Permutation Tests for r × c Contingency Tables

For a broad class of statistical tests the data can be represented in the form of the r × c

contingency table x displayed in Table 1.

The entry in each cell of this r × c table is the number of subjects falling in the

corresponding row and column classifications. The row and column classifications may be

based on either nominal or ordered variables. Nominal variables take on values which

cannot be positioned in any natural order. An example of a nominal variable is

profession—Medicine, Law, Business. In some statistical packages, nominal variables are

also referred to as class variables, or unordered variables. Ordered variables take on values

which can be ordered in a natural way. An example of an ordered variable is Drug

Dose—Low, Medium, High. Ordered variables may of course assume numerical values as

well (for example, the number of cigarettes smoked per day).
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The Exact Permutation Distribution of x

The exact probability distribution of x depends on the sampling scheme that was used to

generate x. When both the row and column classifications are categorical, Agresti [1] lists

three sampling schemes that could give rise to x; full multinomial sampling, product

multinomial sampling, and Poisson sampling. Under all three schemes the probability

distribution of x contains unknown parameters, πij , relating to the individual cells of the

r × c table (see LOGLINEAR MODELS). For instance, for full multinomial sampling, πij

denotes the probability of classification in row i and column j, whereas for product

multinomial sampling πij denotes the conditional probability of falling in column j given

that the subject belongs to row i.

Consider the null hypothesis of no row by column interaction. Since statistical inference is

based on the distribution of x under the null hypothesis of no row by column interaction,

the number of unknown parameters is reduced (πij being replaced by πi.π.j or π.j

depending on the sampling scheme) but not eliminated. Asymptotic inference relies on

estimating these unknown parameters by maximum likelihood and related methods. The

key to exact permutational inference is getting rid of all nuisance parameters from the

probability distribution of x. This is accomplished by restricting the sample space to the

set of all r × c contingency tables that have the same marginal sums as the observed table

x. Specifically, define the reference set

Γ = {y : y is r × c;
c∑

j=1

yij = mi;
r∑

i=1

yij = nj ; for all i, j} . (1)

Then one can show that, under the null hypothesis of no row by column interaction, the

probability of observing x conditional on x ∈ Γ is of the hypergeometric form

Pr(x | x ∈ Γ) ≡ P (x) =
r∏

i=1

c∏
j=1

nj !mi!
N !xij !

. (2)
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Equation (2), which is free of all unknown parameters, holds for categorical data whether

the sampling scheme used to generate x is full multinomial, product multinomial, or

Poisson. (See, for example, Agresti [2].)

Since (2) contains no unknown parameters, exact inference is possible. The nuisance

parameters were, however, eliminated by conditioning on the margins of the observed

contingency table. Now some of these margins were not fixed when the data were

gathered. Thus it is reasonable to question the appropriateness of fixing them for

purposes of inference. The justification for conditioning at inference time on margins that

were not naturally fixed at data sampling time has a long history. R.A. Fisher [11] first

proposed this idea for exact inference on a single 2 × 2 contingency table. At various times

since then prominent statisticians have commented on this approach. The principles most

cited for conditioning are the sufficiency principle, the ancillarity principle, and the

randomization principle. An informal intuitive explanation of these three principles is

provided below.

Sufficiency Principle The margins of the contingency table are sufficient statistics for

unknown nuisance parameters. Thus conditioning on them affords a convenient way

to eliminate nuisance parameters from the likelihood function. For example, if the

data are generated by product multinomial sampling the row margins, mi, would

ordinarily be considered fixed but the column margins, nj would be considered

random variables. The null hypothesis of interest states that πij = π.j for all i. Thus

the probability of x depends on c unknown nuisance parameters, (π.1, π.2, . . . π.c)

even under the null hypothesis. By the sufficiency principle, these nuisance

parameters are eliminated if we condition on (n1, n2, . . . nc), their sufficient statistics.

It follows that by restricting our attention to r × c tables in Γ we are implicitly

conditioning on (n1, n2, . . . nc), since the other set of margins, (m1, m2, . . . mr), are
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fixed naturally by the sampling scheme. Similar sufficiency arguments can be made

for full multinomial and Poisson sampling.

Ancillarity Principle The principle underlying hypothesis testing is to compare what

was actually observed with what could have been observed in hypothetical

repetitions of the original experiment, under the null hypothesis. In these

hypothetical repetitions it is a good idea to keep all experimental conditions

unrelated to the null hypothesis unchanged as far as possible. The margins of the

contingency table are representative of nuisance parameters whose values do not

provide any information about the null hypothesis of interest. In this sense they are

ancillary statistics. Fixing them in hypothetical repetitions is the nearest we can get

to fixing the values of the nuisance parameters themselves in hypothetical

repetitions, since the latter are unknown.

Randomization Principle The case for conditioning is especially persuasive if the r

rows of the contingency tables represent r different treatments, with mi subjects

being assigned to treatment i by a randomization mechanism. Each subject provides

a multinomial response that falls into one of the c columns. Thus nj represents the

total number of responses of the jth type. Now, under the null hypothesis, the r

treatments are equally effective. Therefore the response that a patient provides is

the same, regardless of the treatment to which that patient is randomized. Thus the

value of nj is predetermined and may be regarded as fixed. The statistical

significance of the observed outcome is judged relative to its permutational

distribution in hypothetical repetitions of the randomization rule for assigning

patients to treatments.

An excellent exposition of the conditional viewpoint is available in Yates [40]. For a

theoretical justification of the sufficiency and ancillarity principles refer to Cox and
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Hinkeley [9], and Reid [32]. For a detailed exposition of the randomization principle,

highlighting its applicability to a broad range of problems, refer to Edgington [10].

Throughout the present paper we shall adopt the conditional approach. It provides us

with a unified way to perform exact inference and thereby compute accurate p-values and

confidence intervals for r × c contingency tables, stratified 2 × 2 contingency tables,

stratified 2 × c contingency tables, and logistic regression.

Exact P-Values

Having assigned an exact probability P (y) to each y ∈ Γ, the next step is to order each

contingency table in Γ by a test statistic or “discrepancy measure” that quantifies the

extent to which that table deviates from the null hypothesis of no row by column

interaction. Let us denote the test statistic by a real valued function D : Γ −→ R

mapping r × c tables from Γ onto the real line R. The functional form of D for some

important nonparametric tests is specified in the next section.

The p-value is defined as the sum of null probabilities of all the tables in Γ which are at

least as extreme as the observed table, x, with respect to D. In particular if x is the

observed r × c table, the exact p-value is

p =
∑

D(y)≥D(x)

P (y) = Pr{D(y) ≥ D(x)} . (3)

Classical nonparametric methods rely on the large-sample distribution of D to estimate p.

For r × c tables with large cell counts and the usual forms for the function D it is possible

to show that D converges in distribution to a chi-square with appropriate degrees of

freedom. Thus p is usually estimated by p̃, the chi-square tail area to the right of D(x).

Modern algorithmic techniques have made it possible to compute p directly instead of

relying on p̃, its asymptotic approximation. This is achieved by powerful recursive
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algorithms that are capable of generating the actual permutation distribution of D instead

of relying on its asymptotic chi-square approximation. We shall see later that p and p̃ can

differ considerably for contingency tables with small cell counts.

The main advantage of using p rather than p̃ is that it is guaranteed to bound the type-1

error rate of the hypothesis testing procedure to any desired level. Moreover, this

guarantee is provided unconditionally even though each p-value, p, is calculated

conditionally by restricting attention to a specific reference set Γ. To see this, let

S(Γ) = Pr(p ≤ α|Γ) . (4)

That is, S(Γ) is the conditional type-1 error rate of a level-α hypothesis testing procedure

in which you repeatedly generate r × c tables from the same reference set, Γ, under the

null hypothesis, and reject whenever p ≤ α. Under the null hypothesis S(Γ) ≤ α. Now the

unconditional type-1 error rate, where Γ may be different each time you execute the test, is

S =
∑

S(Γ) Pr(Γ) , (5)

the sum being taken over all possible reference sets, Γ. Notice that (5) is a weighted sum

of terms of the form S(Γ), where each such term is less than or equal to α, the weights,

Pr(Γ), are positive, and they sum to 1. Thus

S ≤ α .

That is, the guaranteed protection against the type-1 error of an exact conditional

hypothesis test also applies unconditionally. Note, however, that this guarantee does not

hold if you use p̃ rather than p in the decision to reject the null hypothesis, since

Pr(p̃ ≤ 0.05|Γ) ≤ α holds only asymptotically.
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Choosing the Test Statistic

As stated previously, the reference set Γ is ordered by the test statistic D. Here we define

D for three important classes of problems; tests on unordered r × c contingency tables,

tests on singly ordered r × c contingency tables and tests on doubly ordered r × c

contingency tables.

When both the row and column classifications of the table are nominal the table is said to

be unordered and the Fisher, Pearson and Likelihood ratio statistics are the most

appropriate. Tests based on these three statistics are known as omnibus tests for they are

powerful against any general alternative to the null hypothesis of no row by column

interaction (see CHI-SQUARED TESTS).

Fisher’s exact test orders each table, y ∈ Γ, in proportion to its hypergeometric

probability, P (y), given by equation (2). Fisher [11] originally proposed this test for the

single 2 × 2 contingency table. The idea was extended to tables of higher dimension by

Freeman and Halton [12]. Thus, this test is also referred to as the Freeman-Halton test.

Asymptotically, under the null hypothesis of no row by column interaction, −2 log γP (y)

has a chi-squared distribution with (r − 1)(c − 1) degrees of freedom, where γ is a

normalizing constant (Mehta and Patel [22]).

The Pearson test orders the tables in Γ according to their Pearson chi-squared statistics.

Thus, for each y ∈ Γ the test statistic is

D(y) =
r∑

i=1

c∑
j=1

(yij − minj/N)2

minj/N
. (6)

Asymptotically, under the null hypothesis of no row by column interaction, the Pearson

statistic has a chi-squared distribution with (r − 1)(c − 1) degrees of freedom.

The Likelihood Ratio test orders the tables in Γ according to the likelihood ratio statistic.
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Specifically, for each y ∈ Γ the test statistic is

D(y) = 2
r∑

i=1

c∑
j=1

yij log(
yij

minj/N
) . (7)

In many textbooks this statistic is denoted by G2. Asymptotically, under the null

hypothesis of no row by column interaction, D(y) has a chi-squared distribution with

(r − 1)(c − 1) degrees of freedom.

When there is a natural ordering of the columns of the r × c table, but the row

classifications are based on nominal categories, appropriate tests are the Kruskal-Wallis

test (Landis, Heyman and Koch [17]), and its generalization, the one-way ANOVA test

(Miller [27]). For example suppose that the r rows represent r different drug therapies,

and the c columns represent c distinct ordered responses (such as, no response, mild

response, moderate response, severe response, etc.). One is interested in testing the null

hypothesis that the r drugs have the same multinomial response rates. The Kruskal-Wallis

and generalized one-way ANOVA tests are more powerful than the Fisher, Pearson or

Likelihood Ratio tests for testing this null hypothesis against ordered alternatives which

imply that some of these r drugs are more responsive than others. These tests take

advantage of the natural ordering of the columns by assigning a rank or column score to

all the observations in a column. The test statistic is obtained as a quadratic function of

an r-dimensional vector whose components are formed by summing the column scores of

the observations in each of the r rows and standardizing each sum. For the Kruskal-Wallis

test the observations in a column are assigned their mid-rank and the special case, r = 2,

yields the Wilcoxon rank-sum test. For the generalized one-way ANOVA test any

monotone scores may be assigned. By suitable choice of these scores, one can construct a

large number of tests, including the normal scores, exponential scores and logrank tests as

special cases. The test statistics for all these tests are given in Chapter 18 of the

StatXact-3 User Manual [37]. Asymptotically they are all distributed as chi-square with
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(r − 1) degrees of freedom under the null hypothesis of no row by column interaction.

When the r × c contingency table has a natural ordering along both its rows and its

columns, the Jonckheere-Terpstra test (Hollander and Wolfe [16]) and the

Linear-by-Linear association test (Agresti, Mehta and Patel [3]) have more power than the

Kruskal-Wallis test or the various (r − 1) degree of freedom generalized ANOVA tests. For

example suppose the r rows represent r distinct drug therapies at progressively increasing

doses and the c columns represent c ordered responses. Now one would be interested in

detecting alternatives to the null hypothesis in which drugs administered at larger doses

are more responsive than drugs administered at smaller doses. The Jonckheere-Terpstra

and Linear-by-Linear association test statistics cater explicitly to such alternatives for

they are better able to pick up departures from the null hypothesis in which the response

distribution shifts progressively towards the right as we move down the rows of the

contingency table. The Jonckheere-Terpstra statistic, is the normalized sum of r(r − 1)/2

Wilcoxon rank-sum statistics formed by taking all possible pairs of rows from the r rows

of the observed r × c contingency table, and computing a Wilcoxon rank-sum statistic for

each resulting 2 × c contingency table. The Linear-by-linear association statistic is

obtained by standardizing
∑

i,j uivjyij , where the ui’s are arbitrary row scores and the vj ’s

are arbitrary column scores. The row scores often represent progressively increasing doses

of a treatment while the column scores often represent progressively increasing levels of

response to treatment. If the ui’s and vj ’s represent the original raw data, the

Linear-by-linear test is a test of significance for Pearson’s correlation coefficient. On the

other hand if the raw data are replaced by Wilcoxon mid-rank scores, we have a test of

Spearman’s correlation coefficient. Refer to Chapter 19 of the StatXact-3 User Manual

[37] for the precise functional forms of the Jonckheere-Terpstra and the Linear-by-linear

test statistics. Under the null hypothesis of no row by column interaction these test
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statistics are normally distributed. The special case, r = 2, yields the family of

two-sample linear rank tests. For these tests, row scores are irrelevant but a large number

of different column scores, covering most of the important nonparametric tests, are listed

in Chapters 9 and 15 the StatXact-3 User Manual [37].

Extension to Continuous Data

The methods described above extend naturally to continuous data. In principle, such data

can also be represented as contingency tables but the columns of these tables will sum to

1. Thus these methods provide a unified approach to handling nonparametric data both

for the categorical case and the more traditional continuous case. For example consider

the two-sample problem involving continuous data displayed in Table 2. The two groups

are ‘males’ and ‘females’. The continuous variable being compared in the two groups is

‘monthly income’.

These data can be represented by the 2 × 8 contingency table, displayed as Table 3, which

may then be permuted in the usual way for exact inference.

The same idea extends to continuous K-sample data with or without stratification, and

with or without censoring.

Stratified 2 × 2 Contingency Tables

A very important class of exact nonparametric tests and confidence intervals is defined on

data in the form of s 2 × 2 contingency tables. The ith such table is displayed in Table 4

below.

We may regard the two columns of each table as arising from two independent binomial

distributions. Specifically, let (xi1, xi2) represent the number of successes in (ni1, ni2)
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Bernoulli trials, with respective success probabilities (πi1, πi2). The odds ratio for the ith

table is defined as

Ψi = (
πi2

1 − πi2
)/(

πi1

1 − πi1
) . (8)

Stratified 2 × 2 contingency tables arise commonly in prospective studies with binary end

points as well as in retrospective case-control studies. Thus although we have specified

that the two columns of the 2 × 2 table represent two independent binomial distributions,

this is just a matter of notational convenience. We could equivalently assume that the two

rows represent the disease status (present or absent) and the two columns represent the

exposure status (not-exposed or exposed) in the ith of s matched sets.

We shall be interested in deriving an exact test for the null hypothesis that

Ψ1 = Ψ2 = · · · = Ψs = Ψ . (9)

This is known as the homogeneity test. Next, under the assumption of homogeneity, we

shall be interested in computing an exact confidence interval for the common odds ratio,

Ψ, and in testing that it equals 1.

Homogeneity Test

Let x denote the observed collection of s 2 × 2 contingency tables, where the ith table in

this collection is displayed in Table 4, and define

t = x11 + x21 + · · · + xs1 . (10)

Let Ω denote a reference set of collections of s 2 × 2 contingency tables whose margins are

fixed at the values that were actually observed:

Ω =

{
y: yi1 + yi2 = mi1; y′

i1 + y′
i2 = mi2

yi1 + y′
i1 = ni1; yi2 + y′

i2 = ni2 .

}
(11)
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Define the more restricted reference set

Ωt = {y ∈ Ω: y11 + y21 + . . . ys1 = t} . (12)

Zelen [41] has shown that under the null hypothesis of homogeneity (9)

Pr(x|x ∈ Ωt) =

∏s
i=1

∏2
j=1

(nij
xij

)
∑

y∈Ωt

∏s
i=1

∏2
j=1

(nij
yij

) . (13)

An exact test for the homogeneity of odds ratios can thus be constructed by ordering all

elements y ∈ Ωt according to the test statistic

D(y) = − log Pr(y|y ∈ Ωt)

and computing the exact p-value

p =
∑

D(y)≥D(x)

Pr(y|y ∈ Ωt) .

This test is known as Zelen’s exact test. A statistic proposed by Breslow and Day [7] is

approximately distributed as chi-square with (s − 1) degrees of freedom under the null

hypothesis (see BRESLOW-DAY TEST).

Common Odds Ratio Inference

Exact inference about Ψ, the common odds ratio, is based on the conditional distribution

of

T = y11 + y21 + · · · + ys1 (14)

given y ∈ Ω. It is shown in Mehta, Patel and Gray [23] that

Pr(T = t|y ∈ Ω) =
CtΨt∑
u CuΨu

, (15)

where

Ct =
∑

y∈Ωt

s∏
i=1

2∏
j=1

(
nij

yij

)
, (16)
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and the denominator of equation (15) is simply the normalizing constant obtained by

summing over all possible values of u in the range tmin ≤ u ≤ tmax.

To test the null hypothesis that Ψ = 1 and to compute an exact confidence interval for

this common odds ratio we need the coefficients Ct for all possible values of t. Network

algorithms for this and related computations are described in Mehta, Patel and Gray [23].

Once these coefficients have been obtained, the conditional distribution of t for any value

of Ψ can be generated by equation (15) and hypothesis tests and confidence intervals may

thereby be obtained as shown in the above references.

Asymptotic inference for Ψ is usually based on the popular Mantel-Haenszel [20] method

(see MANTEL-HAENSZEL TEST).

Extension to Stratified 2 × c Contingency Tables

In this section we discuss inference on stratified 2 × c tables where the ith of s such tables

is displayed as Table 5.

This collection of s 2 × c tables, denoted by x, can accomodate two situations; two

multinomial populations, and c binomial populations. For both cases we assume that data

are stratified into s independent strata. Inference is conditional on ordering all three-way

collections of s 2 × c tables in the conditional reference set

Λ = {y: yij + y′
ij = nij ,∀ij;

c∑
j=1

yij = mi1,
c∑

j=1

y′
ij = mi2,∀i} (17)

according to some discrepancy measure D(y). We shall be concerned in this section with

the special case where the c columns of each 2 × c contingency table have a natural

ordering. In this case an appropriate (unstandardized) discrepancy measure is the linear

rank test statistic

t(y) =
s∑

i=1

c∑
j=1

vijyij (18)
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where the vij ’s are arbitrary column scores.

Two Multinomial Populations The two rows of stratum i represent two independent

multinomial populations. Each observation falls into one of c ordinal response

categories. Thus xij is the number of stratum-i observations, out of a total of mi1,

falling into ordered category j for population 1, and x′
ij is the number of stratum-i

observations out of a total of mi2 falling into ordered category j for population 2.

The Wilcoxon rank-sum test, the Normal scores test, the Savage test, and the

logrank test are examples of tests that are applicable to such data. The vij scores for

these tests are defined in Chapter 15 of StatXact-3 [37].

Several Binomial Populations The c columns of stratum i represent c independent

binomial populations with row 1 representing successes and row 2 representing

failures. For population j in stratum i there are xij successes and x′
ij failures in nij

independent Bernoulli trials. The Cochran-Armitage Trend test and the Permutation

test with arbitrary scores are applicable to such data, and determine whether the

success rates of the c populations are the same, as against the alternative that they

follow an increasing or decreasing trend. The scores, vi1, vi2, . . . vic typically

represent doses, or levels of exposure, affecting the success rates of the c binomial

populations. Often one uses the equally spaced scores vij = j for all i.

We shall assume throughout that there exists no three-factor interaction between rows,

columns and strata. An exact test of this hypothesis requires us to include interaction

terms in a general logistic regression framework and test that they equal zero. This is an

extension of the exact test of homogeneity for s 2 × 2 contingency tables and will not be

discussed here. Given that there is no three-factor interaction, however, we are interested

in testing the null hypothesis that the row and column classifications in each stratum are
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independent. This is known as the hypothesis of conditional independence. One can show

that, for both the two multinomial and the c binomial settings under the null hypothesis

of conditional independence, the probability of observing y given y ∈ Λ is

Pr(y|y ∈ Λ) =

∏s
i=1

∏c
j=1

(nij
yij

)
∏s

i=1
( Ni
mi1

) . (19)

The exact one-sided p-value for testing the null hypothesis of conditional independence is

therefore

p1 =
∑

t(y)≥t(x)

Pr(y|y ∈ Λ) . (20)

The exact two-sided p-value is defined by reflecting the observed value of the test statistic

an equal distant away from its mean in the opposite tail. See StatXact-3 [37] for details.

Computational Issues

Computing equation (3) is a nontrivial task. The size of the reference set grows

exponentially so that explicit enumeration of all the tables in Γ soon becomes

computationally infeasible. For example, the reference set of all 5 × 6 tables with row

sums of (7, 7, 12, 4, 4) and column sums of (4, 5, 6, 5, 7, 7) contains 1.6 billion tables.

Yet, the tables in this reference set are all rather sparse and unlikely to yield accurate

p-values based on large sample theory. Network algorithms have been developed by

Mehta, Patel, and co-workers, [22], [23], [21], [26], [25], to enumerate the tables in Γ

implicitly. In these algorithms the reference set is represented by a network of nodes and

arcs. A sequence of connected arcs from the starting to the terminal node constitutes a

path through the network. Each such path represents one and only one table in Γ. The

length of a path equals the value of the test statistic for the table to which that path

corresponds. The probability of the path equals the probability of the corresponding

table. Thus the problem of computing an exact p-value is equivalent to the problem of
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identifying paths whose lengths equal or exceed a specified value, and summing the

probabilities of all these paths. This can be accomplished by well-known operations

research techniques such as backward induction and forward probing through the network.

These methods are very efficient and make it feasible to compute exact p-values.

Alternate approaches are provided by Pagano and Halvorsen [28], Pagano and

Tritchler [29], Streitberg and Rohmel [38], Baglivo, Olivier and Pagano [6], Vollset, Hirji

and Elashoff [39], and Cheung and Klotz [8]. Sometimes a data set is too large even for

implicit enumeration, yet it is sufficiently sparse that the asymptotic results are suspect.

For such situations a Monte Carlo estimate and associated 99% confidence interval for the

exact p-value may be obtained. In the Monte Carlo method, tables are sampled from Γ in

proportion to their hypergeometric probabilities (2), and a count is kept of all the sampled

tables that are more extreme than the observed table. For details, refer to Agresti,

Wackerly and Boyett [4], Patefield [30], Mehta, Patel and Senchaudhuri [24], and

Senchaudhuri, Mehta and Patel [34].

Analysis of Data Sets

In this section we will illustrate the techniques developed in the previous sections with

some data analyses. Each example will highlight the different conclusions one might draw

if an asymptotic analyis were performed instead of an exact analysis. A large number of

additional examples are available at the Cytel web site http://www.cytel.com. All

results were obtained by the StatXact-3 software package [37].
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An Unordered Contingency Table

Data were obtained on the location of oral lesions, in house to house surveys in three

geographic regions of rural India, by Gupta, Mehta and Pindborg [15]. Consider a

hypothetical subset of these data displayed by Table 6 as a 9 × 3 contingency table in

which the counts are the number of patients with oral lesions per site and geographic

region.

The question of interest is whether the distribution of the site of the oral lesion is

significantly different in the three geographic regions. The row and column classifications

for this 9 × 3 table are clearly unordered, making it an appropriate data set for either the

Fisher, Pearson or Likelihood Ratio tests. The exact and asymptotic p-values are

displayed in Table 7. There are striking differences between the two methods. The exact

analysis suggests that the row and column classifications are dependent, but the

asymptotic analysis fails to show this.

A Singly Ordered Contingency Table

The tumor regression rates of five chemotherapy regimens, Cytoxan (CTX) alone,

Cyclohexyl-chloroethyl nitrosurea (CCNU) alone, Methotrexate (MTX) alone, CTX +

MTX, and CTX + CCNU + MTX were compared in a small clinical trial. Tumor

regression was measured on a three-point scale: no response, partial response, or complete

response. The results are tabulated in Table 8

Small pilot studies like this one are frequently conducted as a preliminary to planning a

large-scale randomized clinical trial. For such data the Kruskal-Wallis test may be used to

determine whether or not the five drug regimens are significantly different with respect to

their tumor regression rates. The observed value of the Kruskal-Wallis statistic for this
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table is 8.682. Referring this value to a chi-square distribution with 4 degrees of freedom

yields an asymptotic p-value of 0.0695 which is not significant at the 0.05 level. However,

based on the permutation distribution of the Kruskal-Wallis statistic, the exact p-value is

0.039, which is statistically significant.

Analysis of Stratified 2 × 2 Contingency Tables

Testing the Homogeneity of Odds Ratios

The binary response data tabulated in Table 9 compare a new drug with a control drug at

22 hospital sites.

The data can be thought of as twenty-two 2 × 2 contingency tables, one for each site. If

you examine the 2 × 2 tables carefully, you notice that site 15 appears to be different from

the others. Whereas all the other sites have a low response rate for both the new drug and

the control drug, the response rate of the control drug is 79% at site 15. The Homogeneity

test can tell you whether the observed difference at site 15 is a real difference or whether it

is just a chance fluctuation due to a small sample. Because of the sparseness in the data,

the asymptotic (Breslow-Day) statistic might not yield an accurate p-value. The exact

(Zelen) test is preferred. The exact p-value is 0.0135. Thus we reject the null hypothesis

that there is a common odds ratio across the 22 sites. The data strongly suggest that the

odds ratio at site 15 is different from the other odds ratios. The asymptotic (Breslow-Day)

p-value is much larger (0.0785) and is only marginally significant.

Estimating the Common Odds Ratio

The court case of Hogan v. Pierce (Gastwirth [13]) involved the minority hiring data

displayed in Table 10.

The most notable feature of these data is that at each hiring opportunity not a single
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black was hired, whereas small numbers of whites were hired. This makes it impossible to

use the usual large-sample maximum likelihood or Mantel-Haenszel [20] methods for

estimating the odds of being hired for whites relative to blacks. These methods simply fail

to converge. Only the exact method provides a valid answer and it shows that the odds of

being hired for a white relative to a black are no lower than 2.3 to 1, with 95% confidence.

Test of Trend in Stratified 2 × c Contingency Tables

The data for this example were provided by the U.S. Food and Drug Administration

(FDA). Animals were treated with four dose levels of a carcinogen and then observed (at

necropsy) for the presence or absence of a tumor type. The data were stratified by survival

time (in weeks) into the four time-intervals 0–50, 51–80, 81–104, and terminal sacrifice.

Since there were no tumors found in the first time-interval, this stratum may be excluded

from data entry. The data for the remaining three strata are displayed in Table 11.

We use the stratified Cochran-Armitage trend test (Breslow and Day [7], page 148) to

determine if there is a dose-response relationship between the level of carcinogen and the

presence of tumors. The test statistic is defined by equation (18), where vij is the

dose-level of carcinogen and yij is the number of animals with tumors, at the jth dose

level in the ith stratum. The results are tabulated in Table 12.

There are large differences between the exact and asymptotic one-sided p-values, and they

lead to different conclusions about the significance of the dose-response relationship. They

also show that the usual practice of doubling the one-sided p-value is unnecessarily

conservative with asymmetric distributions. But the most interesting finding of all is that

the distribution of the linear rank statistic (18) has multiple towers. A normal

approximation would be seriously misleading. This is shown in Figure 1.
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Software and Related Resources for Exact Inference

We have presented the essential idea behind exact permutational inference, described one

numerical algorithm, referenced others, and shown through several examples that exact

inference is a valuable supplement to corresponding asymptotic methods.

Software support for these methods is available in many standard packages including

StatXact-3 [37], LogXact-2 [18], SPSS Exact Tests [36] and SAS Version 6.11 [33]. A brief

description of the StatXact-3 and LogXact-2 software packages is given elsewhere (see

STATXACT).

Some of the newer textbooks on nonparametric methods, for example, Manly [19], Sprent

[35], Good [14], Edgington [10], and Agresti [1] devote considerable space to exact and

Monte Carlo methods of inference for categorical data. A useful survey paper, in which a

unified treatment of exact inference for categorical data is presented through the log linear

model, was recently published by Agresti [2]. A complete collection of references to

statistical methodology, numerical algorithms, commercial software, shareware, and

textbooks on exact permutational inference can be obtained by visiting the Exact-Stats

world-wide web site on the Internet. The address is

http://www.mailbase.ac.uk/lists-a-e/exact-stats.
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Tables and Figures
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Table 1: Layout for a Generic r × c Contingency Table

Rows Col 1 Col 2 . . . Col c Row Total
Row 1 x11 x12 . . . x1c m1
Row 2 x21 x22 . . . x2c m2
...

...
... · · · ...

...
Row r xr1 xr2 . . . xrc mr

Col Tot n1 n2 . . . nc N
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Table 2: Two-sample Continuous Data Represented the Traditional Way

M M M M F F F F
2010 3100 2555 2095 1990 2122 1875 2550
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Table 3: Two-sample Continuous Data Represented as a 2 × 8 Contingency Table

Rows Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Row Total
Male 0 0 1 1 0 0 1 1 4
Female 1 1 0 0 1 1 0 0 4
Col Tot 1 1 1 1 1 1 1 1 8
Col Score 1875 1990 2010 2095 2122 2550 2555 3100
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Table 4: Layout for the ith of s 2 × 2 Contingency Tables

Rows Col 1 Col 2 Row Total
Row 1 xi1 xi2 mi1
Row 2 x′

i1 x′
i2 mi2

Col Tot ni1 ni2 Ni
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Table 5: Layout for the ith of s 2 × c Contingency Tables

Rows Col 1 Col 2 . . . Col c Row Total
Row 1 xi1 xi2 . . . xic mi1
Row 2 x′

i1 x′
i2 . . . x′

ic mi2

Col Tot ni1 ni2 . . . nic Ni

Col Score vi1 vi2 . . . vic
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Table 6: Oral Lesions Data

Site of Lesion Kerala Gujarat Andhra
Labial Mucosa 0 1 0
Buccal Mucosa 8 1 8
Commissure 0 1 0
Gingiva 0 1 0
Hard Palate 0 1 0
Soft Palate 0 1 0
Tongue 0 1 0
Floor of Mouth 1 0 1
Alveolar Ridge 1 0 1
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Table 7: Exact and Asymptotic P-values for Oral Lesions Data

TYPE OF THREE TESTS OF INDEPENDENCE
INFERENCE PEARSON FISHER LIKELIHOOD RATIO
Value of D(x) 22.1 19.72 23.3

Asymptotic p-value .1400 .2331 .1060
Exact p-value .0269 .0101 .0356
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Table 8: Chemotherapy Pilot Study Data

CHEMO No Resp. Partial Resp. Complete Resp.
CTX 2 0 0

CCNU 1 1 0
MTX 3 0 0

CTX+CCNU 2 2 0
CTX+CCNU+MTX 1 1 4
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Table 9: Site by Treatment Interaction Data

Test New Drug Control Drug Test New Drug Control Drug
Site Resp No Resp No Site Resp No Resp No
1 0 15 0 15 12 0 12 1 11
2 0 39 6 32 13 0 24 5 19
3 1 20 3 18 14 2 10 2 11
4 1 14 2 15 15 0 14 11 3
5 1 20 2 19 16 0 53 4 48
6 0 12 2 10 17 0 20 0 20
7 3 49 10 42 18 0 21 0 21
8 0 19 2 17 19 1 50 1 48
9 1 14 0 15 20 0 13 1 13
10 2 26 2 27 21 0 13 1 13
11 0 19 2 18 22 0 21 0 21
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Table 10: Minority Hiring Data

Date of Hire Whites Blacks
Hired Not Hired Not

7/74 4 16 0 7
8/74 4 13 0 7
9/74 2 13 0 8
4/75 1 17 0 8
5/75 1 17 0 8
10/75 1 29 0 10
11/75 2 29 0 10
2/76 1 30 0 10
3/76 1 30 0 10
11/77 1 33 0 13
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Table 11: FDA Animal Toxicology Data

Stratum 1: 51–80 weeks of survival
Dose of Carcinogen

Disease Status None 1 unit 5 units 50 units Total
Tumor Present 0 0 0 1 1
Tumor Absent 7 10 6 8 31

Stratum 2: 81–104 weeks of survival
Dose of Carcinogen

Disease Status None 1 unit 5 units 50 units Total
Tumor Present 0 1 0 1 2
Tumor Absent 11 9 13 14 47

Stratum 3: Sacrificed at end of 104 weeks
Dose of Carcinogen

Disease Status None 1 unit 5 units 50 units Total
Tumor Present 1 1 1 2 5
Tumor Absent 29 26 28 20 103
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Table 12: One and Two-sided P-values for FDA Data

P-VALUES One-Sided Two-Sided Double One-Sided
Exact .0651 .0769 .1302

Asymptotic .0410 .0820 .0820
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Figure 1: Distribution of Trend Test Statistic for FDA Data
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