

Adaptive Design in Early Phase Clinical Trials

James Matcham Vice President, Strategic Consulting

Console Overview

*Configurable windows – expand or contract as needed

Agenda

- Background
- Dose Escalation
- Decision Making
- Combination Studies
- Dose Finding
- Enrichment
- Q&A

Clinical Development Plans

Non-Oncology

Oncology

Cytel

Adaptive Design in Early Phase Clinical Trials

Traditional Approach

Adaptive Design Approach

Test trial design

Benefit of Adaptive Designs

Example Adaptive Phase 1/2 Design

Clinical Development Decision Points

Agenda

- Background
- Dose Escalation
- Decision Making
- Combination Studies
- Dose Finding
- Enrichment
- Q&A

SAD/MAD/Dose Escalation

- Sequential cohorts, can repeat doses in Single Ascending Dose (SAD) and Multiple Ascending Dosing (MAD)
- Escalation is based on observing Dose Limiting Toxicities (DLT)
- Dose Escalation Committee (DEC) govern escalation decisions
- PK data collected for further dose/schedule decisions
- Response Biomarkers are valuable to determine correct activity thresholds

Dose Ranging

Questions: Is there a range of safe doses where we can explore efficacy? Is there a Maximum Tolerated Dose?

Dose Escalation

- Small cohorts with randomization to placebo
- Doses are logarithmically spaced usually doubled
- Starting dose < 1/100 predicted human dose
- At the end of each dose cohort a Data Review Committee assesses safety data and decides on dose increases
- Escalation is based on observing Dose Limiting Toxicities
- Traditional 3+3 rule common
- No statistician involved

Escalation Rules

Algorithm-Based

- 3+3
- mTPI
- i3+3
- Adaptive Dose Insertion
- Dual Agent PIPE

Model-based

- CRM
- TITE-CRM
- BOIN
- BLRM
- Dual Agent BLRM

All approaches are methods to estimate the Maximum Tolerated Dose

Documented Issues with 3+3 Design

- Chance of recommending wrong Phase 2 Dose is high, so future trials will need to dose adjust
- What happens with N=2, 4, 5 in a cohort?
- Considerable inertia amongst trialists to adopt better methods
- Cannot include intermediate doses
- No information to guide stepping from monotherapy to combination
- Need to repeat recommended dose with additional cohort to confirm safety outcome

Embracing model-based designs for dose-finding trials

Sharon B Love^{*,1}, Sarah Brown², Christopher J Weir³, Chris Harbron⁴, Christina Yap⁵, Birgit Gaschler-Markefski⁶, James Matcham⁷, Louise Caffrey⁸, Christopher McKevitt⁹, Sally Clive¹⁰, Charlie Craddock¹¹, James Spicer¹² and Victoria Cornelius¹³

Modified Target Probability Interval (mTPI)

Max. Number of Doses: 7 **Design Parameters** Stopping Rules Trial Monitoring Table **Response Generation** Simulation Controls Prior Max. Sample Size: 30 Target Probability of Toxicity (P_T): 0.3 $P_i \sim Beta (a, b)$ Ŧ Cohort Size: 3 Toxicity Intervals Lower Limit Upper Limit Under dosing 0.000 0.250 P_i: True Toxicity Probability at Dose i Start With 3+3 H Proper dosing 0.250 0.350 \sim Over dosing 0.350 1.000 a (Prior Toxicity): 0.33 O Switch to mTPI upon reaching MTD b (Prior Non-Toxicity): 0.66 Switch to mTPI upon observing first DLT

mTPI in EAST

mTPI Trial Monitoring Table

Edit Trial Monitoring Table: Click any cell to edit O mTPI O mTPI-2

Number of patients treated at current dose

Example: Toxicity Profile Scenarios

Dose Toxicity Curve 0.9 0.8 Probability of Toxicity 0.7 0.6 Early 0.5 0.4 Late 0.3 0.2 0.1 Safe 0 0.06 2 8 4 Dose

Probability of Toxicity

Tevisity	Dose Level										
Profile	0.06	0.18	0.54	1	2	4	8				
Safe	0.05	0.05	0.05	0.05	0.05	0.05	0.05				
Late	0.05	0.05	0.05	0.05	0.1	0.2	0.5				
Early	0.05	0.05	0.2	0.35	0.4	0.5	0.5				

mTPI vs 3+3: Early Scenario

mTPI Comments

- mTPI provides a 'statistician-free' DRC meeting
- Allows possibility of any number of patients at each dose
- Does not use any information from adjoining doses
- Each dose is treated separately
- Does not inform intermediate doses

Bayesian Logistic Regression Model

We can model the toxicity response curve using a logistic model relating the P(toxicity) to the dose

```
logit(p_i) = ln(\alpha) + \beta ln(x/x_{ref})
```

where p_i is the P(toxicity) at dose x_i and x_{ref} is a reference dose. Using a Bayesian approach we can

- use informative priors for α and β
- predict the P(toxicity) after each cohort
- use this to choose the next dose

Priors for α and β

 $Ln(\alpha) \sim N(-0.847, 2)$ P(tox)=42% at dose=10

 $Ln(\beta) \sim N(0,1)$ Assumes monotonic increasing

BLRM Specification in EAST

Max. Number of Doses: 7	Response Constation Sin	ulation Contr	ols		East Version 6.5
Sesign Faranceers Stopping rates	Response deneration - Sin		013		
Max. Sample Size: 30	Target Probability of T	oxicity (P _T):	0.3	Distribution: Bivaria	ite Normal
Cohort Size: 3	Dose Selection Meth	od		Prior Specification	1
☑ Start With 3+3 H ~	O Max Targeted Toxi	city O Ba	yes Risk	Prior Calculato)r
O Switch to BLRM upon reaching MTD	Toxicity Intervals	Lower Limit	Upper Limit	In (o) In (β)
• Switch to BLRM upon observing first DLT	Under dosing	0.000	0.250	Mean: -0.	847 0 🔢
	Targeted toxicity	0.250	0.350	SD:	
	Excessive toxicity	0.350	1.000	30.	2 1
	Unacceptable toxicity			Correlation:	0
	EWOC: Prob. (Overdosi Reference Dose (D*):	ng) < 0	.25	Save Prior Sam	iples
		L		Posterior Sampling	g Methods
	Dose Skipping Optic	ons			

Output

Playbook Support

DLT=1/3

	" [Predictod Fit. 🖬 95%	CLI 🖪 50% CLI				
	1.9 -						
(L8 -						
(17 -						
(fa)							
LTon							
the c							
Sec.	14.5						1
- 0	13-					1	-
(12						
(11 -						
	0.05	0.18	0.54	1	2		
			Dose (n	(9%3)			

	Dose (mg/kg)	0.06	0.18	0.54	1.0	2.0	4.0	8.0
	Excess: P(Tox) ≥33%	0.1	0.2	1.5	5.7	19.2	38.8	56.6
-	Target: P(Tox) ≥16%, <33%	1.5	4.2	13.8	24.4	32.1	30.5	24.3
-	Under: P(Tox) <16%	98.5	95.6	84.7	69.9	48.7	30.6	19.1

Dose (mg/kg)	0.06	0.18	0.54	1.0	2.0	4.0	8.0
Excess: P(Tox) ≥33%	0.3	1.2	8.5	24.3	50.2	69.7	81.1
Target: P(Tox) ≥16%, <33%	5.3	14.1	36.0	42.6	33.8	22.2	14.3
Under: P(Tox) <16%	94.3	84.7	55.5	33.1	15.9	8.1	4.6

	CUE-101-1 Cabort 4 BLRM for Toxicity Response Curve (2/3 DLT)	
	1.0 Predicted Fit @ 95% CLI @ 50% CLI	
	0.9-	
	0.9-	
_	0.7 -	
ouic by	0.0-	
E d b	05-	-
edicte.	0.4 -	
đ	03-	
	0.2-	
	0.1-	
	0.0	
	0.05 0.18 0.54 1 2 4	
	Dase (mg/kg)	

Dose (mg/kg)	0.06	0.18	0.54	1.0	2.0	4.0	8.0
Excess: P(Tox) ≥33%	1.0	4.3	25.9	53.9	78.0	89.0	93.8
Target: P(Tox) ≥16%, <33%	10.7	27.3	47.5	36.1	18.6	9.6	5.4
Under: P(Tox) <16%	88.3	68.4	26.5	9.9	3.3	1.4	0.7

Agenda

- Background
- Dose Escalation
- Decision Making
- Combination Studies
- Dose Finding
- Enrichment
- Q&A

Decision Making Today

p(TS): Phase II 50% p(TS): Phase III 80% Cost: lead optimization \$5 Cycle time: Phase III 1.25 p(TS): Phase I 65% p(TS): submission to launch 100% Cycle time: Phase II 1.25 \$20 Cost: Phase II Cost: Phase III **\$**75 Cycle time: submission to launch 0.75 Cost: Phase I \$7.5 p(TS): preclinical 80% Cost: hit-to-lead \$1.25 p(TS): lead optimization Cycle time: Phase I Cost: preclinical Cycle time: lead optimization Cost: target-to-hit Cycle time: preclinical p(TS): hit-to-lead Cost: submission to launch Cycle time: hit-to-lead p(TS): target-to-hit Cycle time: target-to-hit

\$1,200

Parameter

\$1,400

Capitalized cost per launch (US\$ millions)

\$1,800

0.5 1.5

Baseline value

25%

60%

\$15

3.75

\$60

\$225

\$2,000

\$2,200

2.25

\$22.5

60%

\$3.75

75%

2.25

\$7.5

3.0

\$1.5

1.5

65%

\$60

2.25

70%

3.75

45%

80%

34%

70%

54%

91%

\$10 million

2.5 years

2.5 years

1.5 years

69%

85%

1.5 years

2 years

1 year

75%

\$1 million

\$40 million

1.5 years

80%

1 year

\$2,400

\$5 million

\$40 million

\$150 million

\$15 million

\$2.5 million

Paul et al (2010)

Cytel

\$1,600

95%

0.75

\$2.5

1.0

0.5

85%

\$20

0.75

90%

\$0.5

Early Phase Decision-Making

In a candidate-rich early phase portfolio, there is a focus on good decision-making at the point of investment decisions

Decision Making Approaches

- Decisions at interims are common
- Single indication
- Biomarker Endpoint
- Sized to exceed a minimum Target Response
- Simon's 2 Stage Design only gives futility decision
- Bayesian interim decisions are now more common GO = P(Response > p_o) > 80% , STOP if P(Response > p_o) < 10%
- Early phase studies can be expanded to pivotal for accelerated approval
- Determine baseline biomarker cut-off values
- Bayesian learning about biomarker cut-off points SCUBA, SBATT methods

Decision Outcomes

Two Outcome Decisions

Stop Go

Three Outcome Decisions

Stop	Go	Accelerate
Stop	Consider	Go

Example Decision Framework

Three outcome decision

Decision parameters

Target Value (TV)	Desired level of performance
Lower Reference Value (LRV)	Minimal level of performance
False Stop Risk	Risk of a "Stop" decision if the truth is better than the TV
False Go Risk	Risk of "Go" decision if the truth is at worse than the LRV

Frewer et al (2016)

Decision Error Probabilities

Decision Making

OKGO

* Assuming 30 patients * Stop and Go correspond to upper-limit of 1-sided 90% CI and lower-limit of 1-sided 80% CI

Probability of Success

At the end of Phase 2, the following probabilities can be calculated to help in the decision to proceed to the Phase 3 stage

Probability	Definition
Technical Success	Probability of Phase3 study with a significant p-value
Technical and Regulatory Success	and a clinically relevant treatment effect
Market Success	that is better than the competitor product

Clinical Development Decision Points

Agenda

- Background
- Dose Escalation
- Decision Making
- Combination Studies
- Dose Finding
- Enrichment
- Q&A

Combination Therapies

- Combination of two (or more) treatments to provide enhanced efficacy
 - Enhanced efficacy can also result in enhanced toxicity
 - Investigate overlapping toxicities
- One treatment is often new, and the other existing
 - Dose escalation with new treatment with fixed dose of standard
 - Dose escalation of both treatments
- Demonstration of correct doses and schedules are needed
- One treatment can influence the PKPD of the other treatment

Escalation with Dual Agents

Probability of Toxicity

Dose Escalation with Dual Agents

- Discover multiple dose combinations with similar safety for further exploration
- Then compare to get the best efficacy
- Use of historical data on the standard and all other data on new drug to improve escalation decisions

Dose Escalation with Dual Agents

- One dimensional dose escalation
 - 3 parameter BLRM model: $logit(p_i) = ln(\alpha_i) + \beta ln(x_i/x_{ref})$
- Fix each dose of A then escalate up doses of B (Yuan and Yin, 2008)
- Assume prior ordering, then do single dimension CRM (Kramar et al (1999)
- Logistic model with 6 parameters (Thall et al, 2003)
- Contour finding methods (Mander and Sweeting, 2015)
- Assumption of monotonicity is not unreasonable

Product of Independent Probabilities (PIPE)

For dose combinations *i*,*j* assume

$$\pi_{ij}|a_{ij}, b_{ij} \sim Beta(a_{ij}, b_{ij}) \ \forall i, j$$

Assume monotonicity and then evaluate all possible contours (Mander and Sweeting 2015)

 $1 \quad d_1$ d_{.1} 1 d_1 $\begin{array}{c|c} d_{2} & 0 \\ \hline 1 & d_{2} \end{array}$ 1 0 0 d_2 d_2 d_1 d_2 d_1 d_1 d_2 d_{1} d_{.1} 0 0 d_{.1} 0 0 d_{.2} 0 0 d_{.2} d_2 0 0 0 d_{1} d_2 d_{1} d_{2} d_1 d_2

Which Dual Agent Design?

Table 1 Summary of features for various dual-agent dose escalation study designs					
Study	Number of model parameters	Stages	Outcomes	Response values	Number of RP2D combinations
Rule-based designs					
Hamberg and Verweij (2009) ⁵⁷	-	1	Toxicity	Binary	1 or 2
Lee and Fan (2012) ⁵⁸	-	1	Toxicity	Binary	1 or 2
Huang et al. (2007) ⁷¹	-	2	Toxicity and efficacy	Binary	0 or 1
Lee et al. (2008)59	-	2	Toxicity	Binary	1
Model-based designs					
Wang and Ivanova (2005) ⁶⁰	3	2	Toxicity	Binary	Minimum number of doses of drug A or drug B
Yin and Yuan (2009)62	3	2	Toxicity	Binary	1
Yin and Yuan (2009)63	3	2	Toxicity	Binary	1
Kramar et al. (1999) ⁶¹	2	2	Toxicity	Binary	1
Su (2010) ⁶⁴	1	3	Toxicity	Binary	1
Thall et al. (2003)31	6	2	Toxicity	Binary	3
Mandrekar et al. (2007) ⁷³	6	1	Toxicity and efficacy	Binary (toxicity and efficacy)	1
Houede et al. (2010)77	21	1	Toxicity and efficacy	Ordinal (toxicity and efficacy)	1
Dragalin et al. (2008) ⁷⁹	8	2	Toxicity and efficacy	Binary, ordinal or continuous (toxicity and efficacy)	1
Whitehead et al. (2011) ⁷⁵	Between K and 3K*	1	Toxicity and efficacy	Binary (toxicity and efficacy)	Trial dependent (0-9)
Conaway et al. (2004) ⁶⁸	К	2	Toxicity	Binary	1
Wages et al. (2011) ⁷⁰	M‡	2	Toxicity	Binary	1
Wages et al. (2011) ⁶⁹	M‡	1	Toxicity	Binary	1
Braun and Wang (2010) ⁸⁰	6	1	Toxicity	Binary	1
Bailey et al. (2009)67	≥3§	1	Toxicity	Binary	1
*Number of parameters depends on the choice of discrete for the dose-escalation model. [§] Two parameters required f K, number of combinations; M, number of simple orders; F					

Harrington et al (2013)

Seamless Phase 2a/b Combination Design

- Regulators require demonstration of contribution of components
- Minimise number of patients exposed to monotherapies
- Can use Historical Data for the established monotherapy
- Use unequal randomization ratios
- Adaptive dose dropping based on futility at interim

Agenda

- Background
- Dose Escalation
- Decision Making
- Combination Studies
- Dose Finding
- Enrichment
- Q&A

Dose Finding

Questions: What is the minimum effective dose? What is the dose that gives the desired efficacy?

Seamless P2a/b Dose Response Design

- Model-based dose response is now preferred and should now be our standard approach to proposing doses for phase 3
- Uses fewer resources to get to dose decisions
- In most cases the form of the dose response model is known
- Current thinking is that Phase 2A should begin with 4-8 doses groups, covering an 80-fold range of doses. In phase 2b the number of dose groups should reduce to 2-4.

Dose-Response Studies

Establish Proof-of-Concept (PoC)

• Change in dose — desirable change in endpoint of interest

Dose finding step

 Select one (or more) "good" dose levels for confirmatory Phase III once PoC has been established

Traditional Approach

Proof-of-Concept: Conducted using (multiple) active arms and control

Selection of Target Dose:

- 1. statistically significant at the proof-of-concept stage
- 2. smallest of statistically significant doses but also clinically relevant

Dose-Response Modeling:

- 1. use data from PoC and earlier trials
- 2. find a statistical model capturing the effects of target dose on dose-response

Modern Approaches to Dose Finding

Traditional ANOVA

Design Focused

- Adaptive Bayesian Modelling
- D-Optimality

Analysis Focussed

- Multiple Testing Procedures
- MCP-Mod
- Bayesian Model Averaging

Multiple Testing Approaches

- Pairwise comparison of each dose to control
- Aim to control Type 1 Error

Parametric	P-Value
Dunnett's single step Dunnett's step-down Dunnett's step-up	Bonferroni Sidak Holm step down Weighted Bonferroni Hochberg's step up
	Hommel's step up

Bayesian Adaptive Model

Phase 2A: Doses = 0, 1, 3, 10, 30, 100, 300, 600 5 pts/dose group Sigmoidal Emax Model $dose^{h}$

$$y = e_0 + e_{\max} \frac{dose^h}{dose^h + ED50^h}$$

Prior information available

Parameter	Prior	
hill	$Ln(h) \sim N(0, 0.53^2)$	Median=1.0 90%CL(0.1,10)
ED50	$Ln(ED50) \sim N(1.3, 0.53^2)$	Median=50 90%CL(1,500)
Placebo	$e_0 \sim N(0, 100^2)$	Uninformative
Max Effect	$e_{\rm max} \sim N(0, 100^2)$	Uninformative

Bayesian Adaptive Model: Example

Interim

Optimisation D-Optimality C-Optimality ED50 MED Target Response

Bayesian Adaptive Model: Example

Interim 0 0 100 100 75 - TV 75 Predicted resp Predicted resp 50 50 LRV 0 8 25 25 0 0 0 0 C 0 0 8 🗕 — — Predicted Fit 🔲 90% CLI 🔲 50% CLI o Observed Data — — — Predicted Fit 🔲 90% CLI 🔲 50% CLI o Observed Data -25 -25 0.1 0.1 1000 10 100 1000 1 10 100 dose dose

Final

Optimisation **D-Optimality C-Optimality** ED50 MED **Target Response**

Candidate Dose Response Models

Irial Design Stage

rial Analysis Stage

Phase Clinical Trials

MCP + Mod = MCPMod

Design Stage

Cute

 Pre-specification of candidate dose-response models

Analysis Stage (MCP-step)

 Statistical test for doseresponse signal. Model selection based on significant dose response models

Analysis Stage (Mod-step)

 Dose response and target dose estimation based on doseresponse modeling

MCP-Mod Regulatory Opinion

- CHMP: First opinion issued in 2010, since then 12 qualification opinions (biomarkers, technologies/devices, simulation models) MCP-Mod first statistical methodology qualified
- FDA: Issued its Fit-for-Purpose (FFP) designation for guiding dose selection for Phase III testing. https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM50 8700.pdf

Agenda

- Background
- Dose Escalation
- Decision Making
- Combination Studies
- Dose Finding
- Enrichment
- Q&A

Biomarker Development

Category	Needs	Context of] [Benefit		Evidence to
Diagnostic	Assessment	Use Diamarker		Potential added value to drug development		Support Qualification
Monitoring	development and medical	 Biomarker category Proposed use in drug development 	-	Examples: Improved clinical trial efficiency Improved subject safety 		 Including: Biological rationale Data supporting relationship between the biomarker and clinical outcome of interest
PD/Response	needs that may be addressed				the type and level of evidence needed to support qualification	
Predictive	with proposed biomarker			Risk Anticipated consequences if		
Prognostic				the biomarker is unsuitable for its intended use		
Safety				Underpowered trial		 Analytical performance
Risk				decision		

Biomarker Development

Regulatory guidance exists on the validation of biomarkers Diagnostic Biomarker

• Adaptive biomarker threshold setting

Population enrichment assessed using Adaptive Enrichment Design

Diagnostic Biomarker Designs

Studying Marker-Negative Patients

When the treatment represents an important advance for the marker-positive group, delaying approval because of limited data in the marker-negative group would generally be unreasonable

Determining the need for marker-negative data will be based on:

- the nature of the efficacy shown in the marker-positive population
- the risks of the drug
- whether the effect of treatment would be apparent to an individual patient
- the relative sizes of the marker-positive and -negative populations
- the desire to use the drug in the marker-negative

Population Enrichment

Prospective use of any patient characteristic to obtain a study population in which detection of effect is more likely than in unselected population

Types of PE

- Prognostic: identify high risk patients based on biomarkers
- Predictive: identify patients more likely to respond

Importance

- Help identify highly responsive group, detect treatment effect with smaller sample size
- Failed molecules from one study, may succeed in a different group

Example

 BMS immunotherapy Opdivo failed in lung cancer study whereas Merck competitor Keytruda succeeded: In later case study population was enriched by including only subjects with high level of PD-L1

Method and Assumptions

Study population: divided in two groups based on a predefined biomarker

Study will materialize into two independent cohorts

- First cohort recruits from full population
- Second cohort recruitment depends on an interim analysis based on the first cohort data only

At interim:

- Continue with full population
- Continue with sub-population
- Stop the trial for futility

Subpopulation prevalence will be user-specified

Case study: The TAPPAS trial

Angiosarcoma is an orphan disease

Poorly addressed by current treatments

- Pazopanib a VEGF inhibitor shows modest benefit
- TRC105 can compliment Pazopanib by inhibiting endoglin, a different angiogenic target

Adaptive trial considered optimal due to:

- Small population (1800 cases/year in US)
- Limited prior data
- Greater benefit possible with TRC105 for cutaneous vs visceral tumors

The TAPPAS trial

Objective

Demonstrate superior PFS of TRC105 + pazopanib vs pazopanib alone

Population

Overall, or in the cutaneous subgroup

Two-Stage Design with SSR and Enrichment

	TRC105 +Pazopanib	•	Favorable: Continue a	as planned
ALL COMERS	Pazopanib	Interim Analysis	Promising: Increase sa	Enrich with cutaneous subgroup Continue as planned Stop for futility
p ₁ : p-value for data from cohort 1 p ₂ : p-value for data from cohort 2				

Adaptive Population Enrichment

Analytical Approach

Interim Analysis

p_{int} < p-stop **Efficacy Zone**. Recommend stopping for efficacy

Cp < Cp(fut) **Futility Zone**. Recommend stopping for futility

Cp < Cp(min) **Unfavourable Zone**. If Cp^s > Cp(enrich) Enrich for subgroup

Cp(min) ≤Cp<Cp(max) **Promising Zone**. The results are currently in the 'promising zone'. Increase sample size to achieve a conditional power of Cp(max).

Cp \geq Cp(Max) Favourable Zone. Continue to the planned sample size as the results are currently 'favourable'

Final Analysis

Based on combination of p-values

 p_{1}^{F} : p-value for full data from cohort 1 p_{2}^{F} : p-value for full data from cohort 2 p_1^s : p-value for full data from cohort 1 p_2^s : p-value for full data from cohort 2

Interim Analysis Planned End

PROMISING ZONE

ENRICHMENT

VORABLE

FAVORABLE

Preserving Type I Error

Let H_0^F and H_0^S denote the null hypotheses for the full population and the subgroup respectively

Let $H_0^{FS} = H_0^F \cap H_0^S$ denote the global null hypothesis

Closed testing principle states that type I error is strongly controlled as long as

- Each of the hypotheses in the closed family is tested at local level-α
- H_0^F significant only if both tests for H_0^F and H_0^{FS} are significant at local level- α
- H_0^S significant only if both tests for H_0^S and H_0^{FS} are significant at local level- α

TAPPAS Design

Adaptive design was smaller than the fixed design option (N=125 vs 200)

Adaptive design provides

- Greater power
- Smaller sample size
- Shorter duration

Enrichment Summary

- Population Enrichment should be considered if there is a strong chance of an enhanced treatment effect in an easy to define subgroup at baseline
- It potentially enriches for the subgroup after the interim analysis
- The adaptation needs to be pre-defined in the protocol
- The timing of the interim analysis requires careful planning
- Thorough simulation of the design is necessary to understand the operating characteristics

Conclusions

Adaptive design in early phases

- accelerates clinical development
- reduces costs
- reduces sample size
- reduces time
- better dose selection
- enhances subgroup detection
- introduces decision points
- involves evidence-based decision making
- need careful planning

Questions?

www.Cytel.com

james.matcham@cytel.com

Adaptive Design in Early Phase Clinical Trials

References

- Storer BE (1989) Design and analysis of phase I clinical trials. Biometrics 45:925–937
- O'Quigley J, Pepe M, Fisher L (1990) Continual reassessment method: a practical design for phase 1 clinical trials in cancer. *Biometrics* 46(1): 33-48
- Jaki T, Clive S, Weir CJ (2013) Principles of dose finding studies in cancer: a comparison of trial designs. Cancer Chemother Pharmacol 71(5): 1107-14
- Zohar and Chevret
- Neuenschwander B, Branson M, Gsponer T (2008) Critical aspects of the Bayesian approach to phase I cancer trials. Statistics in Medicine 27(13): 2420-2439
- Le Tourneau C, Lee JJ, Siu LL (2009) Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst 101(10): 708-20
- Babb J, Rogatko A, Zacks S (1998) Cancer phase I clinical trials: Efficient dose escalation with overdose control. Statistics in Medicine 17(10): 1103-1120
- Mander AP, Sweeting MJ. A product of independent beta probabilities dose escalation design for dual-agent phase I trials Statist. Med. 2015, 34 1261–1276
- Cheung, Y. K. and Chappell, R. (2000). Sequential designs for phase I clinical trials with late onset toxicities. Biometrics 56, 1177–1182.
- Huang B, Kuan P. (2014). Time-to-event continual reassessment method incorporating treatment cycle information with application to an oncology phase I trial. *Biometrical Journal*.6: 933-946.
- Huang B, Bycott P, Talukder E (2016). Novel Dose-Finding Designs and Considerations on Practical Implementations in Oncology Clinical Trials. *Journal of Biopharmaceutical Statistics*
- Doussau A, Thiebaut R, Geoerger B, Schoffski P, Floquet A, Le Deley MC, Mathoulin-Pelissier S, Rizzo E, Fumoleau P, Le Tourneau C, Paoletti X (2015) A new approach to integrate toxicity grade and repeated treatment cycles in the analysis and reporting of phase I dose-finding trials. *Ann Oncol* 26(2): 422-8
- Love et al (2017). Embracing model-based designs for dose-finding trials (BJC in review)
- Yuan, Y. and Yin, G. Statistics in Medicine 2008; 27: 5664-78.
- Kramar, A. et al. Statistics in Medicine 1999; 18: 1849-64
- Thall, PF. and Cook, JD. Biometrics 2004; 60: 684-693.
- Thall, P. F., Millikan, R. E., Mueller, P. & Lee, S. J. Dose-finding with two agents in phase I oncology trials. Biometrics 59, 487–496 (2003).
- Harrington, J. A. et al. Adaptive designs for dual-agent phase I dose-escalation studies. Nat. Rev. Clin. Oncol. 10, 277–288 (2013)