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Bayesian inference and applications

Inference: refers to the statistical procedure in which estimation of
unknown parameters is conducted using information from the
observed data.

Bayesian inference is applied in a wide variety of fields
I Medicine: psycology; disease modeling; clinical trials
I Biology: genomics; brain function; imaging analyses
I Law: Courtroom analysis of evidence
I Finance: prediction of financial market
I Politics: presidential election prediction (Nate Silver and now

https://fivethirtyeight.com)
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Nate Silver’s 2012 Presidential Election Prediction
On Nov. 7, 2012, Nate Silver predicted the presidential election results
on all US 50 states with 100% accuracy!
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Example 1: Posterior probability of Election
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Bayesian posterior probabilities (green ) is a compromise of prior
(red) and observed data (likelihood )
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Example 2: Pfizer COVID-19 Vaccine
The Pfizer/BioNTech vaccine is based on a Bayesian trial. The posterior
shows a highly efficacious vaccine based on the proposed Bayesian model
and the observed data.
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Placebo: 162 COVID-19 cases; Vaccine: 8 COVID-19 cases
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Questions for Sequential Designs and Multiple Comparisons 
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Sequential decision making during interim 
analysis for clinical trials

• Interim analyses (IA) allow modification of trial conduct (including 
terminating trials) based on accumulating data from a clinical trial

• Example: Pfizer COVID-19 vaccine trial (Polack et al., 2020)  
• It’s a Bayesian trial

• Frequentist sequential designs are concerned about the overall Type I 
error rate

• Bayesians, by definition, use posterior inference;  and Type I error rate is 
not a statistics of concern
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Type I error rate – what is it?
• Hypothesis testing of treatment effect 𝜃
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𝐻!: 𝜃 ≤ 0 𝑣. 𝑠. 𝐻": 𝜃 > 0
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Bayesians’ approach for assessing error rate
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start End

• Hypothesis testing of treatment effect 𝜃 𝐻!: 𝜃 ≤ 0 𝑣. 𝑠. 𝐻": 𝜃 > 0

1. Compute 𝜉" = Pr(𝐻"|𝑑𝑎𝑡𝑎") at IA;
2. If 𝜉" > 1 − 𝛼, stop the trial due to efficacy and reject 𝐻!; 
3. The probability of making the wrong rejection is (1 − 𝜉") < 𝛼

𝑑𝑎𝑡𝑎" 𝑑𝑎𝑡𝑎

A smaller 𝛼 makes it less likely to make a wrong rejection for the trial. 



Frequentist Sequential Trial Designs: 𝛼-Spending Boundaries
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BNT162b2 COVID-19 vaccine trial is a recent case in which four interim analyses

were planned with the possibility for early stopping (Polack et al., 2020).

An important question that underlies sequential clinical trials is the following:

how should statistical analysis of trial data be a↵ected by the knowledge that interim

analyses have been performed in the past or that further analyses might be undertaken

in the future? (Jennison and Turnbull, 1990). As an illustration, consider a single-

arm trial that aims to establish the therapeutic e↵ect of an investigational drug.

Suppose that a total of K analyses, including (K � 1) interim analyses and a final

analysis, are planned during the course of the trial. At the jth analysis, data of nj

patients are accumulated, denoted by y1, y2, . . . , ynj
and assumed independently and

normally distributed with mean ✓ and variance �2. Here, ✓ is parameterized such

that a positive value of ✓ is indicative of a therapeutic e↵ect, and �2 is assumed

known for simplicity. The planned maximum sample size is denoted by nK and can

be determined based on a power requirement or the amount of available resources.

Most often, patients are enrolled in groups of equal size g, thus nj = jg. If g = 1,

it leads to the fully sequential case, known as continuous monitoring ; if g > 1, it

is called the group sequential case, which is more feasible in practice. The primary

research question of the trial can be formulated as the following hypothesis test,

H0 : ✓  0 vs H1 : ✓ > 0.(1)

At each analysis, the hypothesis test is performed. If certain stopping rule is triggered,

say zj =
Pnj

i=1 yi/
�p

nj · �
�

> cj for some threshold cj, H0 is rejected, and the trial

is terminated for e�cacy. This is referred to as data-dependent or optional stopping.

How should these stopping rules be determined? Under the frequentist paradigm,

type I error rate control is central to hypothesis testing. The type I error rate refers to

the probability of falsely rejecting the null at any analysis (in hypothetical repetitions

of the trial), given that the null hypothesis is true. If each test is performed at a

constant nominal level, the type I error rate will inflate as K grows and will eventually

converge to 1 as K ! 1 (Armitage et al., 1969). Therefore, adjustments to the

stopping rules are necessary to ensure that the overall type I error rate is maintained

at a desirable level. For example, the stopping boundaries may be decided using the

Pocock or O’Brien-Fleming procedure (Pocock, 1977; O’Brien and Fleming, 1979).

Under the Bayesian paradigm, however, the answer to the question is less clear.

Without accounting for the sequential nature of the hypothesis test, Bayesian designs

can su↵er the same problem of type I error inflation, which can be unsettling for

many Bayesian statisticians. Therefore, in many Bayesian sequential trial designs,



Frequentist Sequential Trial Designs: 𝛼 -Spending Functions
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that j = h(nj/nK) � h(nj�1/nK) (with the understanding that n0 = 0). Common

choices of h(u) include

h1(u) = ↵ log (1 + (e � 1)u) ,

h2(u) = 2 � 2�
�
q↵/2/

p
u
�
,

h3(u) = ↵ub for b > 0.

Here, �(·) is the cumulative distribution function of the standard normal distribu-

tion, and q↵/2 = ��1(1 � ↵/2) is the (↵/2)-upper quantile of the standard normal

distribution, �(q↵/2) = 1 � ↵/2. It has been shown that in the case of equal group

sizes, h1(u) and h2(u) produce boundary values similar to those given by Pocock’s

and O’Brien-Fleming’s procedures, respectively. Function h3 is known as the power

spending function and has been studied by Kim and DeMets (1987b). The error-

spending function approach introduces greater flexibility to sequential designs, as the

frequency and timing of the interim analyses do not need to be specified in advance.

2.3. Stochastic Curtailment Based on Conditional Power. Lan et al. (1982)

proposed the idea of stochastic curtailment that at any point in a sequential clinical

trial, if the result at the end of the trial is inevitable, the study can be terminated

early. Consider the single-arm trial example. Suppose that at the final analysis, H0

will be rejected if the final z-statistic zK > q⌘, where q⌘ is the ⌘-upper quantile of

the standard normal distribution. Then, at analysis j, the probability that H0 will

be rejected upon completion of the study, given ✓, is given by

CPj(✓) = Pr(zK > q⌘ | ✓, yj),

where yj = (y1, . . . , ynj
) is the vector of accumulating data up to analysis j. This is

known as the conditional power. A simple calculation shows that

CPj(✓) = 1 � �

2
4

q⌘�
p

nK�nj ȳj

nK�nj
� ✓

�
p

(nK � nj)�1

3
5 .

If based on current data, H0 will likely be rejected at the final analysis even if the

investigational drug has no treatment e↵ect (✓ = 0), then the trial may be stopped

early. Mathematically, one may stop the trial early if CPj(0) > � for some threshold

�. This is equivalent to

zj > q⌘

q
nK/nj + q1��

q
(nK � nj)/nj.(4)

If desirable, one may use di↵erent thresholds �j’s at di↵erent interim analyses. An

important consideration is the type I error rate of this procedure, but Lan et al.

𝛼-spending functions so that ℎ 0 = 0 and ℎ 1 = 𝛼

Conditional power (Lan et al., 1982): 

(Lan and DeMets, 1983)
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Bayesian Sequential Designs -- Overview
• A full Bayesian is not concerned about type I error rates; 

• Therefore, a “pure” Bayesian would simply stop the trial if 
• 𝜉! = Pr(𝐻!|𝑑𝑎𝑡𝑎!) is too high (stopping for efficacy), or
• 𝜉" = Pr(𝐻"|𝑑𝑎𝑡𝑎!) is too high (stopping for futility)
• at any IA or final analysis

• Question: Does the Bayesian procedure inflate the type I error rate?
• Answer: It does; 
• Because the Bayesian procedure would have a higher probability of making the 

wrong rejection in the same “imaginary” trials if multiple IAs are performed

• The real question is: what does controlling type I error rate do to the drug 
approval system and human health care? – Research needed
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Bayesian Sequential Designs: A Review 
• Bayesian designs assume a probability model and use model-based 

inference for parameter estimation.

• Some Bayesian designs use posterior probability (pp) for decision making
• Mixed Frequentist-Bayesian approaches
• Subjective Bayesian approaches
• Calibrated Bayesian approaches

• Some Bayesian designs use posterior predictive probability (ppp) for 
decision making

• Other Bayesian designs use decision theoretical (DT) approaches
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A simple model to illustrate the Bayesian 
designs
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Posterior:	

Hypothesis:	

𝐻!: 𝜃 ≤ 0 𝑣𝑠 𝐻": 𝜃 > 0
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3.1. Designs Based on Posterior Probabilities. In Bayesian sequential designs,

early stopping rules are typically based on the posterior probability (PP) of ✓ being

greater than some threshold (e.g., Thall and Simon, 1994; Heitjan, 1997). Assume

the time and frequency of interim analyses are given in advance. Let ⇡(✓) denote

the prior distribution of ✓. At analysis j, the posterior distribution of ✓ is given by

Bayes’ rule,

p(✓ | yj) =
f(yj | ✓)⇡(✓)R
f(yj | ✓)⇡(✓)d✓

,

where f(yj | ✓) denotes the sampling distribution of yj. When the prior for ✓ is a

conjugate normal distribution, ✓ ⇠ N(µ, ⌫2), the above posterior is available in closed

form,

✓ | yj ⇠ N

✓
µ⌫�2 + ȳjnj�

�2

⌫�2 + nj��2
,

1

⌫�2 + nj��2

◆
.

If PPj = Pr(✓ > 0 | yj) > �j for some threshold �j, H0 is rejected, the trial is

stopped, and e�cacy of the drug is declared. This is equivalent to

µ⌫�2 + ȳjnj�
�2

p
⌫�2 + nj��2

> q1��j
, or zj > q1��j

s
1 +

⌫�2

nj��2
� µ⌫�2

p
nj��2

,(6)

where q1��j
is the (1 � �j)-upper quantile of the standard normal distribution. It

remains to specify the prior ⇡(✓) and threshold values {�1, . . . , �K}. We present

three approaches next.

3.1.1. The Mixed Frequentist-Bayesian Approach. Without accounting for multiple

looks at the data, the stopping rule in Equation (6) can lead to type I error rate

inflation. As an example, consider an improper prior on ✓ by setting ⌫ = 1, that is,

⇡(✓) / 1. In this case, the stopping criterion at analysis j is zj > q1��j
, which has

the same form as the frequentist stopping rules in Section 2 with cj = q1��j
. Suppose

�j ⌘ 0.95, using Equation (3), the type I error rates are ↵ = 0.05, 0.08, 0.13, 0.17, 0.31,

and 1 for K = 1, 2, 5, 10, 100, and 1, respectively.

As encouraged by regulatory agencies (Food and Drug Administration, 2010, 2019),

one should adjust ⇡(✓) and {�1, . . . , �K} according to the planning of interim anal-

yses to achieve desirable type I error rate control (and possibly other frequentist

properties). We refer to this as a mixed frequentist-Bayesian approach.

With an intended type I error rate, the parameters in a Bayesian sequential design

can be chosen in multiple ways. For prespecified threshold values, type I error rate

control can be achieved by using a conservative prior. Freedman and Spiegelhalter

(1989) and Freedman et al. (1994) demonstrated that by tuning the prior distribution

of ✓, one could achieve boundary values similar to or more conservative than Pocock’s

K=4

• Suppose that a total of 𝐾 analyses, including (𝐾 − 1) interim 
analyses and a final analysis, are planned.

• At the 𝑗th analysis, data 𝑦( ∼ 𝑁 𝜃, 𝜎# , 𝑖 = 1, … , 𝑛) , 𝑖𝑖𝑑

• 𝜃 – treatment effect; 𝜎# – known (for simplicity)

• Planned max sample size 𝑛&; sample size at 𝑗th analysis, 𝑛)



Bayesian designs based on pp:
Mixed Frequentist-Bayesian Designs
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Mixed Frequentist Bayesian Designs : Adjust 𝝅(𝜽) and 𝜸𝒋 to achieve overall type I error rate

Examples 1: if 𝝅 𝜽 ∝ 𝟏, then Bayesian = Frequentist, and 𝜸𝒋 may be set to any frequentist boundaries, e.g., 
O’Brian & Fleming 

Example 2: if 𝝅 𝜽 = 𝑵(𝟎, 𝟎. 𝟎𝟓𝟒𝟐)and 𝜸𝒋 ≡ 𝟎. 𝟗𝟓, then (6) controls type I error rate at 0.05. 

If 𝑃𝑃) = Pr 𝜃 > 0 𝑦) > 𝛾) , for some threshold 𝛾) , 𝐻! is rejected, the trial 
stopped, and the efficacy of the drug is declared. This is equivalent to 

𝑍) > 𝑞",-! 1 +
𝜈,#

𝑛)𝜎,#
−

𝜇𝜈,#

𝑛)𝜎,#

where 𝑞",-!is the 1 − 𝛾) th – upper quantile of 𝑁(0, 1).



Bayesian designs based on pp:
Subjective (Full) Bayesian Designs
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Subjective (Full) Bayesian Designs : Subjectively decide  𝝅(𝜽) and 𝜸𝒋 based on prior knowledge 
and risk-benefit assessment

Examples: if the loss of wrongly rejecting the 𝐻! is 19 times the loss of wrongly rejecting 𝐻", then stop the trial 
at any interim as long as Pr 𝜃 > 0 𝑦)) > 0.95, i.e., 𝜸𝒋 ≡ 𝟎. 𝟗𝟓.

The type I error rate is inflated: the overall type I error rates are 
𝛼 = 0.05, 0.08, 0.13, 0.17, 0.31, and 1, for 
𝐾 = 1, 2, 5, 10, 100, and ∞.
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conjugate normal distribution, ✓ ⇠ N(µ, ⌫2), the above posterior is available in closed

form,

✓ | yj ⇠ N

✓
µ⌫�2 + ȳjnj�

�2

⌫�2 + nj��2
,

1

⌫�2 + nj��2

◆
.

If PPj = Pr(✓ > 0 | yj) > �j for some threshold �j, H0 is rejected, the trial is

stopped, and e�cacy of the drug is declared. This is equivalent to

µ⌫�2 + ȳjnj�
�2

p
⌫�2 + nj��2

> q1��j
, or zj > q1��j

s
1 +

⌫�2

nj��2
� µ⌫�2

p
nj��2

,(6)

where q1��j
is the (1 � �j)-upper quantile of the standard normal distribution. It

remains to specify the prior ⇡(✓) and threshold values {�1, . . . , �K}. We present

three approaches next.

3.1.1. The Mixed Frequentist-Bayesian Approach. Without accounting for multiple

looks at the data, the stopping rule in Equation (6) can lead to type I error rate

inflation. As an example, consider an improper prior on ✓ by setting ⌫ = 1, that is,

⇡(✓) / 1. In this case, the stopping criterion at analysis j is zj > q1��j
, which has

the same form as the frequentist stopping rules in Section 2 with cj = q1��j
. Suppose

�j ⌘ 0.95, using Equation (3), the type I error rates are ↵ = 0.05, 0.08, 0.13, 0.17, 0.31,

and 1 for K = 1, 2, 5, 10, 100, and 1, respectively.

As encouraged by regulatory agencies (Food and Drug Administration, 2010, 2019),

one should adjust ⇡(✓) and {�1, . . . , �K} according to the planning of interim anal-

yses to achieve desirable type I error rate control (and possibly other frequentist

properties). We refer to this as a mixed frequentist-Bayesian approach.

With an intended type I error rate, the parameters in a Bayesian sequential design

can be chosen in multiple ways. For prespecified threshold values, type I error rate

control can be achieved by using a conservative prior. Freedman and Spiegelhalter

(1989) and Freedman et al. (1994) demonstrated that by tuning the prior distribution

of ✓, one could achieve boundary values similar to or more conservative than Pocock’s

If 𝑃𝑃) = Pr 𝜃 > 0 𝑦) > 𝛾) , for some threshold 𝛾) , 𝐻! is rejected, the trial 
stopped, and the efficacy of the drug is declared. This is equivalent to 

𝑍) > 𝑞",-! 1 +
𝜈,#

𝑛)𝜎,#
−

𝜇𝜈,#

𝑛)𝜎,#

where 𝑞",-!is the 1 − 𝛾) th – upper quantile of 𝑁(0, 1).



Bayesian designs based on pp:
Subjective Bayesian Designs (con’t)
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Subjective Bayesian Designs : Subjectively decide  𝝅(𝜽) and 𝜸𝒋 based on prior knowledge and 
risk-benefit assessment

Examples: 

if the loss of wrongly rejecting the 𝐻! is 19 times the loss of wrongly rejecting 𝐻", then stop the trial at any 
interim as long as Pr 𝜃 > 0 𝑦)) > 0.95, i.e., 𝜸𝒋 ≡ 𝟎. 𝟗𝟓.

The type I error rate is inflated: the type I error rate 𝛼 = 0.05, 0.08, 0.13, 0.17, 0.31, and 1, for 𝐾 =
1, 2, 5, 10, 100, and ∞.

A few notes:
1. “It is entirely appropriate to collect data until a point has been proven or disproven, or until the data collector 

runs out of time, money, or patience.”(Edwards et al., 1963)
2. Harrell (2020a) gave an intriguing example.
3. The simple procedure of rejecting 𝐻! when 𝑃𝑃) = Pr 𝜃 > 0 𝑦) > 0.95 at any interim analysis does not have 

the problem of the 𝑝 −value: when sample size is large enough, 𝑝 < 0.05 with probability 1. Not for 𝑃𝑃) .



Bayesian designs based on pp:
Calibrated Bayesian Designs

19

Calibrated Bayesian Designs : Calibrate 𝝅(𝜽) and 𝜸𝒋 according to the operating characteristics 
of the Bayesian designs (not just type I error rate) 

Examples:  if the true model and the assumed model are the same, i.e., 𝑓! 𝑦 𝜃)𝜋! 𝜃 = 𝑓 𝑦 𝜃)𝜋 𝜃 , then (6) 
guarantees that

where 𝛾.(' = min{𝛾", … , 𝛾&}.
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The prior and threshold values in the Bayesian design can be chosen such that [FDR

and [FPR do not exceed some prespecified levels for every plausible f0(yK | ✓)⇡0(✓).

In certain contexts, there are theoretical guarantees on the operating characteristics

of Bayesian sequential designs. Specifically, assume the joint model for (yK , ✓) in a

Bayesian design is the same as the actual joint distribution of (yK , ✓) in a series of

trials, i.e., f(yK | ✓)⇡(✓) = f0(yK | ✓)⇡0(✓). Then, both the FDR and FPR of the

Bayesian design over this series of trials are upper bounded regardless of the time

and frequency of interim analyses,

FDR  1 � �min, and FPR 
(1 � �min) ·

R
✓>0

⇡(✓)d✓

�min ·
R
✓0

⇡(✓)d✓
,(8)

where �min = min{�1, . . . , �K}. The proof is given in Appendix A.2 and A.3. There-

fore, from a calibrated Bayesian perspective, the prior on ✓ could be elicited to

resemble the actual distribution of ✓ in repeated practices as closely as possible, and

the threshold values reflect acceptable FDR and FPR levels.

In general, requiring a design to have good operating characteristics (under plau-

sible scenarios) is more lenient than requiring it to have good frequentist properties

(for all possible parameter values). For example, the type I error rate is essentially

the FPR when ⇡0(✓) is a point mass. Stringent type I error rate requires that the

FPR is controlled for all possible ⇡0(✓), even when ⇡0(✓) is a point mass at 0, while

the calibrated Bayesian approach only requires the FPR to be controlled for plau-

sible ⇡0(✓). In this sense, the calibrated Bayesian approach can be thought of as a

middle ground between the mixed frequentist-Bayesian approach and the subjective

Bayesian approach.

3.1.4. Comment on the Three Approaches. We have summarized three approaches

to specifying the prior and threshold values in a Bayesian sequential design. These

approaches are not mutually exclusive. For example, if the investigator is conservative

about a new drug, then the proposed trial design using a subjective Bayesian approach

can as well lead to low FDR and FPR, or even a low type I error rate.

In current practice of Bayesian designs, subjective and calibrated Bayesian perspec-

tives are receiving increasing attentions under early phase, exploratory settings, while

mixed frequentist-Bayesian perspectives are better accepted under late phase, confir-

matory settings. Influenced by Rubin (1984), Little (2006), and Robinson (2019), our

personal recommendation is to regard the subjective Bayesian paradigm as ideal in

principle but often rely on frequentist ideas to better communicate Bayesian designs

and understand their implications in repeated practical use.
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and threshold values {�1, . . . , �K}. Let

� =
�
yK : 9j 2 {1, . . . , K} such that Pr(✓ > 0 | yj) > �j

 

denote the rejection region of the design. That is, H0 is rejected if yK 2 �. Since

false rejections of the null may result in costly failures in drug development, it would

be desirable to control the false discovery rate (FDR) and false positive rate (FPR)

of the design for a range of plausible f0(yK | ✓)⇡0(✓). This is similar to the rationale

of type I error rate control. The FDR (or FPR) is the relative frequency of false

rejections among all rejections (or among all trials with actually negative treatment

e↵ects) in the infinite series of trials. Mathematically,

FDR = Pr0(✓  0 | yK 2 �) =

Z

yK

Pr0(✓  0 | yK)f0(yK | yK 2 �)dyK , and

FPR = Pr0(yK 2 � | ✓  0) =

Z

✓

Pr0(yK 2 � | ✓)⇡0(✓ | ✓  0)d✓.

Here, in the definition of the FDR, Pr0(✓  0 | yK) =
R
✓0

p0(✓ | yK)d✓ is the

relative frequency of nonpositive ✓ among the population of ✓ from ⇡0(✓) that might

have generated yK from f0(yK | ✓), where p0(✓ | yK) = f0(yK | ✓)⇡0(✓)/f0(yK), and

f0(yK) =
R
✓
f0(yK | ✓)⇡0(✓)d✓. In the definition of the FPR, Pr0(yK 2 � | ✓) =

R
yK2� f0(yK | ✓)dyK . Our definitions of the FDR and FPR are slightly di↵erent

from, but closely related to, their typical definitions in a frequentist sense (see, e.g.,

Storey, 2003).

The calibration of the design parameters is typically done through computer sim-

ulations. It can be shown that (Appendix A.2 and A.3)

FDR =

R
yK2�

R
✓0

f0(yK | ✓)⇡0(✓)d✓dyKR
yK2� f0(yK)dyK

,

FPR =

R
✓0

R
yK2� f0(yK | ✓)⇡0(✓)dyKd✓R

✓0
⇡0(✓)d✓

.

Therefore, for each plausible f0(yK | ✓)⇡0(✓), one could generate S hypothetical

trials with treatment e↵ects {✓(1), ✓(2), . . . , ✓(S)} and outcomes {y
(1)
K , y

(2)
K , . . . , y

(S)
K }

(for some large S). Then, the FDR and FPR are respectively approximated by

[FDR =

PS
s=1 1

⇣
y

(s)
K 2 �, ✓(s)  0

⌘

PS
s=1 1

⇣
y

(s)
K 2 �

⌘ , and

[FPR =

PS
s=1 1

⇣
y

(s)
K 2 �, ✓(s)  0

⌘

PS
s=1 1 (✓(s)  0)

.

(7)

False discovery rate (FDR) and false positive rate (FPR):  

Likelihood 𝑓(𝑦|𝜃): 𝑦( ∼
𝑁 𝜃, 𝜎#

Prior	𝜋(𝜃):	𝜃 ∼ 𝑁 𝜇, 𝜈#

Posterior	𝑝(𝜃|𝑦):	

Hypothesis:	

𝐻!: 𝜃 ≤ 0 𝑣𝑠 𝐻": 𝜃 > 0

9

3.1. Designs Based on Posterior Probabilities. In Bayesian sequential designs,

early stopping rules are typically based on the posterior probability (PP) of ✓ being

greater than some threshold (e.g., Thall and Simon, 1994; Heitjan, 1997). Assume

the time and frequency of interim analyses are given in advance. Let ⇡(✓) denote

the prior distribution of ✓. At analysis j, the posterior distribution of ✓ is given by

Bayes’ rule,

p(✓ | yj) =
f(yj | ✓)⇡(✓)R
f(yj | ✓)⇡(✓)d✓

,

where f(yj | ✓) denotes the sampling distribution of yj. When the prior for ✓ is a

conjugate normal distribution, ✓ ⇠ N(µ, ⌫2), the above posterior is available in closed

form,

✓ | yj ⇠ N

✓
µ⌫�2 + ȳjnj�

�2

⌫�2 + nj��2
,

1

⌫�2 + nj��2

◆
.

If PPj = Pr(✓ > 0 | yj) > �j for some threshold �j, H0 is rejected, the trial is

stopped, and e�cacy of the drug is declared. This is equivalent to

µ⌫�2 + ȳjnj�
�2

p
⌫�2 + nj��2

> q1��j
, or zj > q1��j

s
1 +

⌫�2

nj��2
� µ⌫�2

p
nj��2

,(6)

where q1��j
is the (1 � �j)-upper quantile of the standard normal distribution. It

remains to specify the prior ⇡(✓) and threshold values {�1, . . . , �K}. We present

three approaches next.

3.1.1. The Mixed Frequentist-Bayesian Approach. Without accounting for multiple

looks at the data, the stopping rule in Equation (6) can lead to type I error rate

inflation. As an example, consider an improper prior on ✓ by setting ⌫ = 1, that is,

⇡(✓) / 1. In this case, the stopping criterion at analysis j is zj > q1��j
, which has

the same form as the frequentist stopping rules in Section 2 with cj = q1��j
. Suppose

�j ⌘ 0.95, using Equation (3), the type I error rates are ↵ = 0.05, 0.08, 0.13, 0.17, 0.31,

and 1 for K = 1, 2, 5, 10, 100, and 1, respectively.

As encouraged by regulatory agencies (Food and Drug Administration, 2010, 2019),

one should adjust ⇡(✓) and {�1, . . . , �K} according to the planning of interim anal-

yses to achieve desirable type I error rate control (and possibly other frequentist

properties). We refer to this as a mixed frequentist-Bayesian approach.

With an intended type I error rate, the parameters in a Bayesian sequential design

can be chosen in multiple ways. For prespecified threshold values, type I error rate

control can be achieved by using a conservative prior. Freedman and Spiegelhalter

(1989) and Freedman et al. (1994) demonstrated that by tuning the prior distribution

of ✓, one could achieve boundary values similar to or more conservative than Pocock’s

Wrong approvals among

-- all approvals

-- all ineffective drugs

Here, Γ = {𝑦!: ∃𝑗 ∈ 1,… , 𝐾 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 Pr 𝜃 > 0 𝑦" > 𝛾"}



How to calibrate Bayesian designs?
• Through computer simulations:

1. For each plausible true model 𝑓# 𝑦 𝜃)𝜋# 𝜃 , generate 𝑆 hypothetical trials  with 
treatment effects {𝜃 $ , 𝜃 % ,…, 𝜃 & }and outcomes {𝑦 $ , 𝑦 % ,…, 𝑦 & }, for large 𝑆. 

2. Compute

3. Calibrate prior and threshold 𝛾< ’s so that the -FDR and 1FPR do not exceed 
prespecified levels for every plausible 𝑓" 𝑦 𝜃)𝜋" 𝜃 .

Note: Frequentist type I error rate is equivalent to FPR when 𝜋o 𝜃 is a 
point mass at the null value.
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and threshold values {�1, . . . , �K}. Let

� =
�
yK : 9j 2 {1, . . . , K} such that Pr(✓ > 0 | yj) > �j

 

denote the rejection region of the design. That is, H0 is rejected if yK 2 �. Since

false rejections of the null may result in costly failures in drug development, it would

be desirable to control the false discovery rate (FDR) and false positive rate (FPR)

of the design for a range of plausible f0(yK | ✓)⇡0(✓). This is similar to the rationale

of type I error rate control. The FDR (or FPR) is the relative frequency of false

rejections among all rejections (or among all trials with actually negative treatment

e↵ects) in the infinite series of trials. Mathematically,

FDR = Pr0(✓  0 | yK 2 �) =

Z

yK

Pr0(✓  0 | yK)f0(yK | yK 2 �)dyK , and

FPR = Pr0(yK 2 � | ✓  0) =

Z

✓

Pr0(yK 2 � | ✓)⇡0(✓ | ✓  0)d✓.

Here, in the definition of the FDR, Pr0(✓  0 | yK) =
R
✓0

p0(✓ | yK)d✓ is the

relative frequency of nonpositive ✓ among the population of ✓ from ⇡0(✓) that might

have generated yK from f0(yK | ✓), where p0(✓ | yK) = f0(yK | ✓)⇡0(✓)/f0(yK), and

f0(yK) =
R
✓
f0(yK | ✓)⇡0(✓)d✓. In the definition of the FPR, Pr0(yK 2 � | ✓) =

R
yK2� f0(yK | ✓)dyK . Our definitions of the FDR and FPR are slightly di↵erent

from, but closely related to, their typical definitions in a frequentist sense (see, e.g.,

Storey, 2003).

The calibration of the design parameters is typically done through computer sim-

ulations. It can be shown that (Appendix A.2 and A.3)

FDR =

R
yK2�

R
✓0

f0(yK | ✓)⇡0(✓)d✓dyKR
yK2� f0(yK)dyK

,

FPR =

R
✓0

R
yK2� f0(yK | ✓)⇡0(✓)dyKd✓R

✓0
⇡0(✓)d✓

.

Therefore, for each plausible f0(yK | ✓)⇡0(✓), one could generate S hypothetical

trials with treatment e↵ects {✓(1), ✓(2), . . . , ✓(S)} and outcomes {y
(1)
K , y

(2)
K , . . . , y

(S)
K }

(for some large S). Then, the FDR and FPR are respectively approximated by

[FDR =

PS
s=1 1

⇣
y

(s)
K 2 �, ✓(s)  0

⌘

PS
s=1 1

⇣
y

(s)
K 2 �

⌘ , and

[FPR =

PS
s=1 1

⇣
y

(s)
K 2 �, ✓(s)  0

⌘

PS
s=1 1 (✓(s)  0)

.

(7)
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Type I error rate 𝑃𝑟 𝐻! 𝐷𝑎𝑡𝑎 𝐼𝑛𝑑(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻!)FDR/FPR Type I error rate



Bayesian Designs Possess Some Advantages 
• If needed, frequentist properties (such as type I error rate) can be 

achieved

• Bayesian inference (e.g., estimation of treatment effects) obeys the 
likelihood principle; Frequentist inference, e.g., confidence interval and p-
value, are affected by unrealized events

• The confidence interval in a sequential trial may be counter-intuitive (Freedman et 
al., 1994; Rosner and Tsiatis, 1988)

• Frequentist inference can be seriously affected by unexpected events that resulting 
in deviation of the sequential design, such as outbreak of COVID-19

• Bayesian credible intervals are indifferent to stopping rules, no matter what they 
are, since stopping time and treatment effects are independent given the observed 
data (Hendriksen et al., 2021). 
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Likelihood Principle and Frequentist example
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the choice of sample space ordering, the interval may not always include the sample

mean and can include zero di↵erence even for data that lead to a recommendation

to stop the trial at the first interim analysis (see Rosner and Tsiatis, 1988). Third,

stringent frequentist inference can be challenging or unsatisfactory if the prescribed

stopping rule is not followed. For example, a trial may be stopped due to unfore-

seeable circumstances such as the outbreak of COVID-19; in some cases, it may be

desirable to extended a trial beyond the planned sample size. Some have criticized

that the relevance of stopping rules makes it almost impossible to conduct any fre-

quentist inference in a strict sense (Berger, 1980; Berry, 1985; Berger and Wolpert,

1988; Wagenmakers, 2007). Oftentimes, statisticians are presented with a dataset

without knowing how the stopping of the study was decided and why the study was

not stopped earlier. Both factors can a↵ect the frequentist properties of a statisti-

cal procedure, while in practice it is infeasible to keep track of them. Lastly, when

reliable historical information is available, it can be formally incorporated into the

design and analysis of the current trial via Bayesian methods. This may lead to

improvements in trial e�ciency in terms of higher power and saving in sample size

(see Shi and Yin, 2019).

4. The Likelihood Principle

Statistical inference and decision-making in sequential clinical trials are typically

tied with the LP. We provide some discussions in this section.

Let Y denote a random variable with density f✓(y). The likelihood function for ✓,

given the observed outcome y of the random variable Y , is Ly(✓) = f✓(y). That is,

the density evaluated at y and considered as a function of ✓. The (strong) LP, as in

Birnbaum (1962) and Berger and Wolpert (1988), can be summarized as follows:

The Likelihood Principle. All the statistical evidence about ✓ arising from an ex-

periment is contained in the likelihood function for ✓ given y. Two likelihood functions

for ✓ (from the same or di↵erent experiments) contain the same statistical evidence

about ✓ if they are proportional to one another.

Birnbaum (1962) showed that the LP can be deduced from two widely accepted

principles: the su�ciency principle and the conditionality principle. There have been

debates regarding Birnbaum’s proof and the validity of the LP in general. A detailed

treatment of the LP is outside the scope of this paper. We refer interested readers

to Berger and Wolpert (1988), Robins and Wasserman (2000), Evans (2013), Mayo

(2014), Gandenberger (2015a), and Peña and Berger (2017).
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• Imagine that a single-arm trial has been conducted, and 200 outcomes have been recorded that result in 
a z-statistic of 𝑧" = 1.75. 

• Two investigators A and B, who used the same probability model but had different plans about the next 
step. 
• Investigator A planned a second stage for the trial to enroll 200 more patients if 𝑧" ≤ 1.88 (the 

Pocock stopping boundary), 
• Investigator B did not plan to enroll any more patients. 
• According to the LP, the evidence about θ provided by the 200 observations is the same. 
• However, investigator A cannot claim statistical significance using the Pocock design after 200 

observations (and may fail again after all 400 observations), 
• while investigator B can using a fixed design with 200 patients (𝑧" > 𝑞!.!0 = 1.645). 
• In other words, these investigators can reach completely different conclusions about the 

effectiveness of the drug with the exact same data. 



Likelihood Principle and Bayesian example
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Figure 1. Posterior expected losses, as functions of the z-statistic,

for possible decisions that can be made by investigators C and D at

an interim analysis after 200 observations. The trial has a maximum

sample size of 400 patients. Investigator C planned another interim

analysis after 300 observations, while investigator D did not plan to

conduct any additional interim analysis.

not selecting the prior based on trial planning. Intuitively, changing the threshold

values only a↵ects decision-making, while changing the prior a↵ects both the evidence

about ✓ (e.g., point and interval estimations) and decision-making.

5. Numerical Studies

5.1. Stopping Boundaries. As an illustration, we calculate the stopping bound-

aries for the z-statistics given by some of the aforementioned frequentist and Bayesian

sequential designs, that is, the {c1, . . . , cK} values for which we would stop the trial

at analysis j if zj > cj. We consider the single-arm trial example described in Sec-

tion 1. Suppose that a total of K = 5 (interim and final) analyses are planned, the

maximum sample size is nK = 1000, and patients are enrolled in groups of size 200

(nj = 200j). The variance for the outcomes is set at �2 = 1 and is assumed known.

For a fair comparison, the design parameters are calibrated such that the type I error

rate at ✓ = 0 is ↵ = 0.05 for every design. Specifically:

(1) For the Pocock and O’Brien-Fleming procedures (Section 2.1), and the error

spending approaches (Section 2.2), the stopping boundaries are calculated us-

ing the R package gsDesign (Anderson, 2021). For the error spending approach

with spending function h3, we use b = 1.

A Bayesian decision-
theoretic design may lead to 
two different decisions for 
investigators C and D, who 
did and did not plan an 
interim analysis, 
respectively, based on the 
same 200 observations. 

Zhou and Ji (2022)



LP only provides guidance on the estimation, 
not decision making. 
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Numerical Results: Stopping boundaries
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Table 1. Stopping boundaries for the z-statistics given by several

frequentist and Bayesian sequential designs. The single-arm trial in

Section 1 is considered with K = 5 analyses, a maximum sample size of

nK = 1000, and equal group sizes (nj = 200j). The design parameters

are calibrated such that the type I error rate at ✓ = 0 is ↵ = 0.05 for

every design.

Analysis 1 2 3 4 5

No. of patients 200 400 600 800 1000

Frequentist designs:

Pocock 2.12 2.12 2.12 2.12 2.12

O’Brien-Fleming 3.92 2.77 2.26 1.96 1.75

Error spending h1 2.18 2.14 2.11 2.09 2.07

Error spending h2 4.23 2.89 2.30 1.96 1.74

Error spending h3 2.33 2.22 2.12 2.03 1.96

Stochastic curtailment 5.38 3.65 2.82 2.27 1.65

Bayesian designs:

Posterior probability (ver. 1) 2.71 2.24 2.06 1.97 1.91

Posterior probability (ver. 2) 2.13 2.12 2.12 2.12 2.12

Posterior predictive probability 2.50 2.26 2.18 2.11 1.84

Decision-theoretic 2.33 2.22 2.15 2.09 1.91

5.2. Operating Characteristics of a Bayesian Design. We conduct additional

simulation studies to explore the operating characteristics of the Bayesian design in

Section 3.1. Consider the single-arm trial example in Section 1 with a maximum sam-

ple size of nK = 1000. Suppose the actual e↵ect size of the trial, ✓, is a random draw

from N(µ0, ⌫
2
0). As the trial progresses, patient outcomes become available sequen-

tially and follow a normal distribution, y1, y2, . . . ⇠ N(✓, �2). The trial statistician,

on the other hand, uses a N(µ, ⌫2) prior to draw inference about ✓, which may or may

not be identical to the actual population distribution of ✓. For simplicity, assume the

sampling model used by the statistician, f(y | ✓), is correctly specified. At prespec-

ified time and frequency, the statistician conducts interim analyses of accumulating

data. If the stopping rule as in Equation (6) is triggered, H0 is rejected, the trial is

stopped, and e�cacy of the drug is declared.

For stopping boundaries based on posterior 
probabilities, 

Version 1 refers to setting 𝛾! ≡ 0.95 and 
π 𝜃 = 𝑁 0, 0.054" ,which leads to a type I 
error rate of 0.05. 

Version 2 sets π 𝜃 = 𝑁(0, 1) and 𝛾! ≡
0.983, which also leads to a type I error rate 
of 0.05. 



Operating Characteristics

27

• When the Bayesian models are correctly specified, frequentist properties are preserved without the 
need to adjusting for multiple comparison

• When the Bayesian models are missepecified, type I error rates can be inflated when K is large

• If no more than K=10 IAs are planned, recommend setting 𝜈 < 1 to achieve desirable frequentist 
properties.

If 𝑃𝑃) = Pr 𝜃 > 0 𝑦) > 0.95, then efficacy is declared and trial stopped. 

Likelihood 𝑓(𝑦|𝜃): 𝑦( ∼ 𝑁 𝜃, 1 Prior	𝜋(𝜃):	𝜃 ∼ 𝑁 0, 𝜈#

True model: 𝑓(𝑦|𝜃): 𝑦( ∼ 𝑁 𝜃, 1 Prior	𝜋(𝜃):	𝜃 ∼ 𝑁 0, 𝜈!#

Simulation Results



Discussion
• Multiplicity: Bayes vs Frequentist
• Two-arm randomized trials
• Estimation of false approval rate from all approved drugs
• Future and ideal approval process
• Practical Impediment

• Operation and human bias 
• Unblinding

28



Master Protocols
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Modern Clinical Trials with Master Protocols

I Basket trials: 1 treatment and K histologies
I Umbrella trials: K treatments and 1 histology
I Platform trials: ≥ 1 treatments, ≥ 1 histologies, over time
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Tsimberidou, Müller, Ji (2020)
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I-SPY2: A Successful Platform Trials in 21st Century

I Adaptive platform trial;
I RCB 0 or pCR endpoint;

Neoadjuvent
I A common control
I Adaptive randomization
I No sample size – add

new arms, graduate
existing arms adaptively

I Bayesian predictive
probability

I A few promising drugs
graduated; 3 received
accelerated approval

I Reference:
ispytrials.org
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Bayesian designs for early-phase trials
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(1919-2013)

All models are wrong, but some are useful.
-- George Box

3



Oncology drugs with post-
market dose modification

• All the listed drugs had to 
reduce their dose or 
schedule due to toxicity

4Shah et al., 2021, NEJM



Sotorasib (Lumakras) for NSCLC
Approved in May 2021 for patients with NSCLCs harboring KRAS p.G12C 
mutation (based on a phase 2 trial)

The first drug successfully targets KRAS, a historically “undruggable” and 
yet important cancer biomarker

However, a postmarketing trial is required by FDA to further explore lower 
doses than the approved one

This is due to lack of sufficient dose exploration in early-phase development 
(e.g., phase 1 with small sample size; dose selection under MTD-regime)

5



New Era of Dose Optimization: Challenges

6

Higher doses might not 
have better therapeutic 

activity

• MTD is no longer the 
optimal dose

DLT may not be observed 
at clinically active doses

• Dose escalation and dose 
selection challenges

Serious toxic effects may 
occur after several cycles 

of drug usage

• Delayed toxicity/efficacy



New Era of Dose Optimization: Solutions

7

MTD not optimal

• Eff/Tox dose finding (or 
Biomarker/Tox)

DLT may not be observed 
at clinically active doses

• Eff/Tox/Exposure dose 
finding

Delayed toxicity/efficacy

• Time-to-event (TITE) or 
Probability of decision 
(PoD) modeling



The SEARS Design (Pan et al., 2014, Clinical Trials)

DF designD
1

Identify doses with tolerable toxicity

Graduation       
Rule

Adaptive
randomization

D
2

D
3

D
4

D
5

D
3

D
4

D
3

D3 recommended 
for phase III

…

Phase I

Phase II
D
0

D0 is control 
arm

Seamless phase 1/2  oncology dose optimization trials 
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Dose-finding designs over 
last 30 years

• So many designs are available now. 
Which one to use?
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MUCE: A New Bayesian Basket Trial Designs
We consider Bayesian designs and analyses for clinical trials with > 2
arms
Randomized phase II/III trials For example, a three-arm trial with two

doses of a new drug and a placebo/control arm

Master protocol phase II/III trials Each arm is a subgroup of patients
defined by biomarker status, a different drug, or a mini two-arm
subtrial

Multiple expansion cohorts phase Ib trials Each arm is a dose/indication
combination

The endpoints can be survival, response rate, or even continuous
measurement of monitoring biomarkers.

Yuan Ji, PhD Professor of Biostatistics The University of Chicago Bayes Trials 21st Century 11



Multiple expansion cohorts

I A first-in-human (FIH) multiple expansion cohort
trial is a FIH trial with an initial dose-escalation
phase followed by expansion cohorts on specific
doses, indications, schedules, or even drug
combinations.

I FDA released a draft guidance on multiple
expansion cohorts in FIH trials on August 2018
recommending incorporating multiple expansion
cohorts in FIH trials that can “expedite
development by seamlessly proceeding from initial
determination of a potentially effective dose to
individual cohorts that have trial objectives typical
of Phase 2 trials.”.

I Multiple cohorts expansion might include multiple
doses and multiple disease indications, which
results in multiple “baskets” ;

I Doses and indications are two factors; Basket
trials usually only have one factor – indications

 

1152276dft.docx 
07/18/18 

Expansion Cohorts:  Use in 
First-In-Human Clinical Trials 

to Expedite Development of 
Oncology Drugs and Biologics 

Guidance for Industry 
 
 
 

DRAFT GUIDANCE 
 
 This guidance document is being distributed for comment purposes only. 
 
Comments and suggestions regarding this draft document should be submitted within 60 days of 
publication in the Federal Register of the notice announcing the availability of the draft 
guidance.  Submit electronic comments to https://www.regulations.gov.  Submit written 
comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 
Fishers Lane, Rm. 1061, Rockville, MD  20852.  All comments should be identified with the 
docket number listed in the notice of availability that publishes in the Federal Register. 
 
For questions regarding this draft document, contact (CDER) Lee Pai-Scherf at 301-796-3400 or 
(CBER) the Office of Communication, Outreach, and Development at 800-835-4709 or 240-402-
8010.  

 
 
 
 
 
 

U.S. Department of Health and Human Services 
Food and Drug Administration 

Center for Drug Evaluation and Research (CDER)  
Center for Biologics Evaluation and Research (CBER) 

Oncology Center of Excellence (OCE) 
 

August 2018 
Procedural 
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A real use-case for a seamless phase 1a and 1b dose
escalation/expansion cohort trial

The i3+3 design (Liu et al., 2020) for dose escalation
and MUCE for expansion cohorts

Phase 1a/1b seamless design
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Seamless transition
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• NSCLC CPI r/r 

at each dose (adaptive
randomization?)

10 NSCLC CPI naïve 
10 NSCLC CPI r/r 
10 SCLC CPI naïve 
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20 other cancer

at RP2D
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Higher dose violates 
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i3+3 table)
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Stop trial
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Phase 1b: cohort expansion (MUCE)
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Expand 3 mg

Expand d* mg
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Cohort 1

Cohort 2

Expand  3 mg

Expand  10 mg

Expand  20 mg
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The MUCE design/method (for data analysis)

Lyu et al. (2021): https://arxiv.org/abs/2006.07785

Yuan Ji, PhD Professor of Biostatistics The University of Chicago Bayes Trials 21st Century 14
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MUCE – Basket trial designs with multiplicity control
H1i : θN,i > θC,i and H0i : θN,i ≤ θC,i.

Bayesian hierarchical model for multiplicity control
Likelihood Y | θN,i, θC,i ∼ f(·; θN,i, θC,i),
Prior for θ

(θN,i, θC,i) | H1i ∼ f1(·)I(θN,i > θC,i)

(θN,i, θC,i) | H0i ∼ f0(·)I(θN,i ≤ θC,i)

Prior for H1i H1i | p ∼ Bern(p)– the prior probability that H1i is true is p.

Hyperprior for p p ∼ Beta(a, b)

Decision Rule
Reject H0i if Pr(H1i | data) > v. Here (1− v) is the conditional (posterior)
probability of H0i. It is the “Bayesian type I error rate” for arm i if the decision
is to reject H0i.

The priors for H1i and hyperpriorallow p to be random and realizes “multiplicity
control” – a smaller valuemore stringentcontrol.

Yuan Ji, PhD Professor of Biostatistics The University of Chicago Bayes Trials 21st Century 15



Application to multiple expansion cohort studies (as a
two-dimensional basket trial)

Expansion cohorts: each cohort consists of a dose level and an indication
(biomarker subgroups; different cancer types)
Let (i, j) denote the cohort for dose level i, i = 1, . . . , I, and indication
j, j = 1, . . . , J,

I pij : the true and unknown probability of efficacy at cohort (i, j)
I nij : number of patients treated at cohort (i, j)
I yij : number of responders at cohort (i, j)

Whether a cohort (i, j) is promising or not can be tested by two
hypotheses,

H0,ij : pij ≤ p0j vs H1,ij : pij > p0j

where p0j is the reference response rate for indication j.

Yuan Ji, PhD Professor of Biostatistics The University of Chicago Bayes Trials 21st Century 16



MUCE BHM models
Let λij be the indicator of the two hypotheses:
{λij = 1}: H1,ij is true , or {λij = 0}: H0,ij is true

BHM with multiplicity control

likelihood f(y | θ) yij | nij ∼ Bin(nij , pij = logit−1(θij))

Prior for θ θij | λij = 1 ∼ f1(θij)I(pij > p0j)
θij | λij = 0 ∼ f0(θij)I(pij ≤ p0j)

Latent Probit Score λij = I(Zij > 0)

Prior Zij | (ξi, ηj) Zij ∼ N(ξi + ηj , 1)

Priors ξi and ηj

ξi | ξ0 ∼ N(ξ0, 1),
ηj | η0 ∼ N(η0, 1).

}
Borrow & Shrinkage

Hyperprior ξ0 and η0

ξ0 ∼ N(µξ, 1),
η0 ∼ N(µη, 1)

}
Multiplicity control

Yuan Ji, PhD Professor of Biostatistics The University of Chicago Bayes Trials 21st Century 17



Intuitive Decision Rules
I Use Pr(λij = 1 | data) to make inference, which directly quantifies

the posterior probability of each hypothesis.

I Futility stopping: Stop for futility at interim analysis if
Pr(λij = 1 | data) < v1

I Efficacy stopping: Declare arm (i, j) efficacious (i.e, reject H0,ij) at
the end of the trial if

Pr(λij = 1 | data) > v2

I v2: directly controls the “Bayesian type I error probability, which is
< (1− v2).

I Denote ξij = Pr(λij = 1 | data). Bayesian family-wise error rate is

1− Pr(∩{(i,j):ξij>v2}{λij = 1} | data)
and Bayesian false discovery rate is

∑
(i,j):ξij>v2

(1− ξij)
(# : ξij > v2)

.
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Case Study: Sample size reduction
An ongoing oncology trial in Gastric cancer of three expansion cohorts,
single dose, three different H0 and H1’s with different desired α and
power.
Compared to Simon’s 2-stage design, MUCE cuts the sample size by half
with similar type I error rate and power requirement.

Subgroups Arm 1 Arm 2 Arm 3

Total sample 
sizeAssumptions

Endpoint pCR ORR ORR

Historical vs Expected 0.05 vs 0.2 0.4 vs 0.5 0.15 vs 0.3

Alpha 0.05 0.20 0.05

Power 0.80 0.80 0.80

Simon’s 2-stage design N=29
N1*=10

N=81
N1=40

N=55
N1=19 165

MUCE design N=20
N1=10

N=30
N1=15

N=30
N1=15 80
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MUCE Multiplicity Control – How it is done?
Consider the following hyper-parameters in ξ0 ∼ N(µξ, σξ = 1), η0 ∼ N(µη ≡ 0, ση = 1).
Consider 7 versions of the hyper-parameters. Conclude treatment efficacious if
Pr(λij = 1 | data) > v2 = 0.95. Note no calibration of v2 here.

v0: µξ = 0;σξ = ση = 2.5
v1: µξ = 0;σξ = ση = 1
v2: µξ = −3;σξ = ση = 1
v3: µξ = −6;σξ = ση = 1

prior 4: µξ = −10;σξ = ση = 1
prior 5: µξ = −3;σξ = ση = 2.5
prior 6: µξ = −10;σξ = ση = 2.5

Yuan Ji, PhD Professor of Biostatistics The University of Chicago Bayes Trials 21st Century 20



MUCE: Changing the mean (µξ, µη) gives different level of
multiplicity control

Recall the full model of MUCE. Different arms can have different endpoints!

BHM with multiplicity control

likelihood f(y | θ) yij | nij ∼ Bin(nij , pij = logit−1(θij))

Prior for θ θij | λij = 1 ∼ f1(θij)I(pij > pj0)
θij | λij = 0 ∼ f0(θij)I(pij ≤ pj0)

Latent Probit Score λij = I(Zij > 0)

Prior Zij | (ξi, ηj) Zij ∼ N(ξi + ηj , 1)

Priors ξi and ηj

ξi | ξ0 ∼ N(ξ0, 1), and ηj | η0 ∼ N(η0, 1).
}
Borrow & Shrinkage

Hyperprior ξ0 and η0

ξ0 ∼ N(µξ, 1), and η0 ∼ N(µη, 1)
}
Multiplicity control

Making µξand µη negative induces multiplicity control!
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Summary and Remarks

Superior performance MUCE is an advanced Bayesian approach superior
to the Simon’s 2-stage design for expansion cohorts trials and
master protocols: smaller sample size or higher power in frequentist
OCs; better control of Type I error rates in global null

Multiplicity control Compared to existing Bayesian methods, MUCE can
formally adjust the estimated error rates for the decisions based on
posterior inference.

2d-basket MUCE is capable of dealing with flexible borrowing from
multiple doses and multiple indications.
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East Bayes
Formerly known as “U-Design”.
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THANK YOU!
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