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A Network Algorithm for Performing Fisher's Exact 
Test in r x c Contingency Tables 

CYRUS R. MEHTA and NlTlN R. PATEL* 

An exact test of significance of the hypothesis that the 
row and column effects are independent in an r x c con-
tingency table can be executed in principle by general- 
izing Fisher's exact treatment of the 2 x 2 contingency 
table. Each table in a conditional reference set of r x c 
tables with fixed marginal sums is assigned a generalized 
hypergeometric probability. The significance level is then 
computed by summing the probabilities of all tables that 
are no larger (on the probability scale) than the observed 
table. However, the computational effort required to gen- 
erate all r x c contingency tables with fixed marginal 
sums severely limits the use of Fisher's exact test. A 
novel technique that considerably extends the bounds of 
computational feasibility of the exact test is proposed 
here. The problem is transformed into one of identifying 
all paths through a directed acyclic network that equal or 
exceed a fixed length. Some interesting new optimization 
theorems are developed in the process. The numerical 
results reveal that for sparse contingency tables Fisher's 
exact test and Pearson's X 2  test frequently lead to con- 
tradictory inferences concerning row and column inde- 
pendence. 

KEY WORDS: Fisher's exact test; r x c contingency 
tables; Conditional reference set; Network algorithm; 
Contingency tables; Implicit enumeration; Permutation 
distribution; Exact tests. 

1. INTRODUCTION 
Fisher's exact treatment of the 2 x 2 contingency table 

readily generalizes to an exact test of row and column 
independence in r x c contingency tables. One would in 
general prefer to report the exact p value associated with 
an observed r x c table especially when the entries in 
each cell are small. (See, for example, Cochran 1954). It 
is more common, however, to report the tail area of the 
x 2  distribution based on Pearson's X2 statistic, because 
of the formidable computational effort that is needed to 
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perform the exact test of significance. One may get some 
idea of the complexity of this numerical problem from the 
work of Gail and Mantel (1977). 

In a recent paper, Mehta and Pate1 (1980) developed 
an algorithm for computing the exact significance level 
in 2 x c contingency tables. Subsequently, Pagano and 
Halvorsen (1981) provided an algorithm for the more gen- 
eral r x c problem. The present article provides an al- 
ternative algorithm for the exact treatment of r x c con-
tingency tables which considerably extends the bounds 
of computational feasibility relative to the algorithm pro- 
vided by Pagano and Halvorsen. Many r x c tables that 
are computationally feasible with our algorithm, but in- 
feasible without it, are still small enough to justify an 
exact computation rather than a X Z  approximation. 

The network approach that forms the basis of our al- 
gorithm can be adapted to many other exact permutation 
tests. 

2. FORMULATION AS A NETWORK PROBLEM 

Given a r x c contingency table, X ,  let xij denote the 
entry in row i and column j. Let Ri = x;= xij be the 
sum of all entries in row i and let Cj = x;=I xij be the 
sum of all entries in column j. Throughout we will assume 
that the xij's and their various partial sums are nonne- 
gative integers. Denote by 9the reference set of all pos- 
sible r x c contingency tables with the same marginal 
totals as X. Thus 

Under the null hypothesis of row and column independ- 
ence the probability of observing any Y E 9can be ex- 
pressed as a product of multinomial coefficients 

where T = Ri. For later use we define D =x;=I 
T!IRI ! Rz! ... R,!. 

The exact significance level or p value associated with 
the observed table X is defined as the sum of the prob- 
abilities of all the tables in 3 that are no more likely than 
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X. Specifically, 

where Y = { Y :  Y  E 3 and P ( Y ) 5 P ( X ) ) .  
The problem is to evaluate p. Our approach is to con- 

struct a directed acycle network of nodes and arcs such 
that the set of all distinct paths from the initial node to 
the terminal node is isomorphic with the set 3.Moreover, 
by construction, the length of the path that corresponds 
to the table Y E5equals D . P ( Y ) .The original problem 
is now equivalent to identifying and summing the lengths 
of all paths which are no longer than D . P ( X ) .  

2.1 Construction of the Network 
We construct the network in c + 1 stages labeled 

successively c ,  c - 1 ,  . . . , 0 .  At any stage k there 
exist a set of nodes each labeled by a unique vector 
( k ,  R I ~ ,  . . . ,R A ) .Arcs emanate from each node at stage k 
and every arc is directed to exactly one node at stage k - 1 .  
The network is defined recursively by specifying all the 
nodes of the form ( k  - 1 ,  R I, k - I ,  . . . , R,.,+ ,) that suc- 
ceed the node ( k ,  R l k ,  . . . ,Rrk)and are connected to it 
by arcs. The range of Ri,k- i = 1 ,  2 ,  . . . , r for these 
successor nodes is given by 

where Sj  = I Cl and we follow the convention that x.//= 
a summation is null if its lower limit exceeds its upper 
limit. There is only one node at stage c ,  the initial node, 
which is labeled ( c , R I , . ,. . . , R,,.) where Ri(.= R i , i = 
1 ,  2 ,  . . . , r. By applying the recursion (2 .1)successively 
at stages c ,  c - 1 ,  . . . , 1 ,  we obtain exactly one node 
at stage 0 ,  labeled ( 0 ,  0 ,  . . . , 0 ) . This is the terminal 
node. 

The length of an arc from node ( k ,  R I ~ ,  . . . , R r h )to 
node ( k  - 1 ,  R I X x -I ,  . . . , R, . .x - I )is equal to 

A complete path through the network is defined as a 
succession of connected arcs directed from the initial 
node to the terminal node. The length of any path is the 
product of the arc lengths that constitute the path. 

One can readily verify that for a network constructed 
as defined above each path of the form 
( c , R I ~ , ,  +  - 1 , R I . < , - I ). . . , Rtc,) ( C  I ,  . . . ,Rr.<,-

corresponds to an r x c contingency table Y E 9where 
yi,j = R;., - R i , j - l , i  = 1 . 2 , .  . . , r , j  = 1 , 2 , . . . , c .  
Moreover, the length of the path equals D . P ( Y ) . Sup-
pose, for example, that 9is the set of all 3 x 3 contin-
gency tables with R I  = 2,  R2 = 1 ,  R3 = 6 and C I  = 3, 
Cz = 3 ,  C3 = 3 .  The paths of the network in Figure 1 
are in one-to-one correspondence with the tables in 9. 

The d o t t e d  p a t h  c o r r e s p o n d s  t o  t h e  t a b l e  1 0 1 and t h e  l e n g t h  of  t h i s[; ;;] 
Figure 1. Network Representation for All the 3 x 3 Contingency 

Tables with R, = 2, R2 = 1,  R3 = 6 and C1 = 3, C2 = 3, C3 = 3. 

2.2 The Network Algorithm 
Suppose that X is the observed r x c table. In network 

terms our goal is to identify and sum all paths whose 
lengths do not exceed D . P ( X ) .If we systematically enu- 
merate each path through the network, compute its length 
and sum all those path lengths that do not exceed 
D . P ( X ) ,we are in effect examining each r x c table in 
3 individually. This is usually computationally infeasible. 
The advantage of the network representation is that it 
circumvents the need to explicitly enumerate each path. 
To see this, we define the following two items: 

SP(k, R l k ,  . . . , R r k ) =the length of the shortest sub- 
path from node ( k ,  R l  k ,  . . ., 
R,k) to node (0 ,  0 ,  . . . , O ) ,  

LP(k, R I x ,. . . ,R r k )= the length of the longest sub- 
path from node ( k ,  R I x ,  . . . , 
R r x )to node (0 ,  0 ,  . . . , 0 ) .  

Let 9denote all the distinct paths that share a common 
subpath ( c ,  R l c , ,  . . . ,R,<.)-+ ( c  - 1 ,  R l , < , - . . . ,R,,( , -I )  
-+ ... -+ ( k ,  R l k ,  . . . ,Rrk)through stages c ,  c  - 1 ,  . . . , 
k of the network. Let 

" n { C j ! l ( R ~ j  R I , ~ - I ) !PAST = - ... (Rr j  - R r , , i - ~ ) ! >  
, j = X  + 1 

denote the length of the common subpath up to node 
( k ,  R I  k , . . . , R,.k).Although the paths all diverge at this 
node, we can enumerate them implicitly if either one of 
the following two conditions holds: 

PAST . LP(k, R l k ,  . . . , Rrk)5 D . P ( X ) ,  (2.2) 
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or 
PAST . SP(k, Rlk, . . . , Rrk) > D . P(X).  (2.3) 

If (2.2) is satisfied we know immediately that every path 
in 9must be no greater than D . P ( X ) . Hence the lengths 
of all these paths contribute to the p value. But one can 
show (see the Appendix) that the sum of all the path 
lengths in 9 equals 

PAST . (Sk!IRIk! ... R Y k ! )  (2.4) 
so that explicit enumeration of all these paths is unnec- 
essary. If (2.3) is satisfied we know immediately that 
every path in 2 exceeds D . P ( X ) . Hence none of these 
paths can contribute to the p value, and they are dropped 
from all further consideration. Explicit enumeration of 
the paths in 2 is once again unnecessary. If neither (2.2) 
nor (2.3) is satisfied then of course we cannot implicitly 
enumerate all the paths in 9.In that case we extend the 
common subpath to a node (k - 1 ,  R I ,A  . . . , R,,A--

at stage k - 1 in accordance with (2.1) and proceed to 
verify (2.2) and (2.3) in the same manner as before. 

The only remaining problem is to compute SP and LP  
at each node. One approach is to use dynamic program- 
ming in a single backward pass through the network. This 
method was advocated by Mehta and Patel (1980) for 
2 x c contingency tables. For the general r x c problem, 
there may be too many nodes in the network, and this 
approach could soon become computationally infeasible. 
In the next section, we have exploited the special struc- 
ture of this problem to obtain a closed form upper bound 
for LP  and to show how a lower bound for SP can be 
easily computed by solving only a few triangular systems 
of linear equations. These bounds can be substituted in 
equations (2.2) and (2.3). They converge to the true values 
of LP  and SP respectively if the column sums C, are con- 
stant for all j .  

3. THEOREMS FOR COMPUTING THE LONGEST AND 
SHORTEST PATHS FROM ANY NODE TO THE 

TERMINAL NODE 

Let us assume initially that C, = N for all j. We can 
compute LP(k, R I A ,  . . . , R,.L) with the help of the fol- 
lowing theorem. 

Theorem 1 .  The optimal objective function value (OFV) 
for the problem 

subject to 

y,j 2 0 and integer for all i , j ,  (3.4) 

is given by 

where d; = [Rik/k] ([XI denoting the largest integer less 
than or equal to x) and hi = Rik - kdi .  

Proof. Let A = {uc j , i = 1, 2, . . . , r , j = 1, 2,  . . . , 
k} be an optimal solution to PI .  We first show that 
/ u;, - a;, I 5 1 for all i and p # q.  If the contrary is true, 
we can find some i,, , p,,, q, such that a ,,,,, 2 a,,,,,, + 2. 
It then follows from (3.3) that there exists some t ,  # i,, 
such that a,,,,, + 1 5 a,,,,,,. Consider the matrix A '  where 

and = a , ,  for all other i, j values. Clearly A '  satisfies 
(3.2), (3.3), and (3.4). Let O F  be the value of (3.1) under 
A and OF '  be the value of (3.1) under A ' .  Then 

and A cannot be an optimal solution to PI .  This conclu- 
sion contradicts the initial hypothesis; therefore,
I a,, - a;,  I 5 I for all i. It follows from (3.2) that exactly 
h, entries in row i of A are equal to di + I ,  the remaining 
entries being equal to d i .  Substituting these values into 
(3.1) and simplifying yields (3.5). 

Expression (3.5) provides a closed form rapidly com- 
putable formula for LP  from any node. Although no com- 
parable closed form expression for SP is available, one 
can nevertheless compute it fairly easily. The next two 
theorems show how this is done. Before we develop the 
theorems we need the following definition. 

Definition. Let A be any r x k matrix with entries ai,i 
in row i and column j. The matrix A is said to contain a 
cycle if there exist p distinct nonzero entries a; l , i l ,  aiLiz, 
. . . , a,,,i,, such that [I is even and 

The presence of a cycle in A implies that it is possible 
to start from a nonzero cell ( i , ,  jl),and, by alternately 
moving vertically and horizontally to other nonzero cells, 
return to the starting cell. 

Tlzeleoretn 2 .  Let A = { a i j ,  i = 1 ,  2 ,  . . . , r , j = 1 ,  2, 
. , k} be the solution to the following problem. 

P2: minimize (3.1) subject to (3.2), (3.3), and (3.4). 
Then the nonzero entries of A cannot form a cycle.  

Proof. S ~ ~ p p o s e   that A minimizes (3.1) subject to (3.2), 
(3.3) and (3.4). Let a,,, ,, a,,;,, Nil/2, . . . , a i l ; , , , ,  ai l , , be 
a cycle of nonzero entries in A.  Consider solutions A '  
and A" to (3.2), (3.3) and (3.4) in which rt,,' = ai lrr= ai i  
for all i, j not on the cycle but 
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and 

Let OF, OF', and OF" be the values of (3.1) correspond-
ing to A, A', and A". Then 

OF' OF" -- ail.il . a i z j ~  ai1jp- I 

OF2 a l l  + 1 aizjl + 1 ai1j,,-,+ 1 < 1 

So either OF' < OF or < OF" < OF and A cannot min-
imize (3.1). This contradiction proves the theorem. 

It is well known (Hadley 1962, pp. 288-290) that since 
A contains no cycles it must be one of the basic feasible 
solutions of the constraints (3.2) and (3.3). This charac-
terization enables us to minimize (3.1) by systematically 
examining all possible basic feasible solutions of (3.2) and 
(3.3). The next theorem can drastically reduce the number 
of basic feasible solutions to be examined. 

Theorem 3 .  If R I k2 N ,  the minimum OFV of problem 
P2 is equal to the minimum OFV of the following prob-
lem: 

subject to (3.4) and 
k - 1 x y . .  = R .  i = rJ I 2, 3, . . . 9 r f  (3.7) 
j =  l 

Proof. Let { b i j ,i = 1, 2, . . . , r , j = 1, 2, . . . , k -
1) be an optimal solution to P3. Let B be the augmented 
set {b, ,  i = 1, 2, . . . , r, j = 1, 2, . . . , k) in which 
blk = N and bik = 0, i f 1. Then B is feasible for P2 
and yields the same OFV as the minimum OFV for P3. 
This proves that the minimum OFV for P2 5 the mini-
mum OFV for P3. 

Next let A = {a i j ,i = 1, 2, . . . , r, j = 1, 2, . . . , k) 
be an optimal solution to P2. We will presently show that 
a lj,, = N for some value of j,.  By relabeling columns so 
that j, = k and by invoking the constraint (3.3), we see 
that alk  = N and aik = 0,  i # 1. Therefore, the restricted 
s e t { a i j , i =  1 , 2, . . . , r , j =  1 , 2, . . . , k - 1 ) i s a  
feasible solution for P3 and yields the same OFV as the 
minimum OFV for P2. This proves that the minimum 
OFV for P3 r the minimum OFV for P2. 

To complete the proof of the theorem it only remains 
to show that there exists some j, such that a l j ,  = N .  
Suppose that no such j, exists. We can, without loss of 
generality, let 

a112 a122 alp  > 0 and al , ,+ l  
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where 1 5 p 5 k. Since a l l  < N ,  there must be some i, 
such that a i , , ~> 0. Without loss of generality let i, = 2. 
By Theorem 2, it follows that azj = 0,  j = 2, 3, . . . ,p, 
since otherwise there would be a cycle in A. Also, since 
a11 + a12 + ... + alp  r N and a11 + a21 5 N ,  there 
must be a q, 2 5 q 5 p, such that a12 + a13 + + 
a ~ . , - I< a21and a12+ a13 + ... + a ~ ,2 a21.Let a12+ 
a13 + ... + a l ,  - a21 = a r 0. Now construct afeasible 
solution A' = { a l j l ,i = 1, 2, . . . , r , j = 1, 2, . . . , k) 
in which 

and aij' = aij for all other i , j .  
If OF is the value of (3.1) under A and OF' is the value 

of (3.1) under A', the ratio of OFV's is, upon simplifi-
cation, 

Considering the two possibilities a1 I 5 a21and a1 I > a21 
separately, one can show that OF > OF'. Thus a l j< N 
for all j is impossible for an optimal solution to P2. 

This theorem is useful provided k r r. Notice that if k 
r r , at least one row, i, say, has Ri,,kr N since 

r x Riklr = k Nlr 2 N .  
i =  l 

We have, without any loss of generality, relabeled row 
i ,  as row 1 in Theorem 3. The optimal solution to P3 is 
easier to obtain than the optimal solution to P2 since there 
are r fewer variables in P3. 

We may apply Theorem 3 repeatedly, eliminating r var-
iables from the resulting optimization problem each time, 
until there are no longer any row totals whose values 
exceed N .  This leads to the following corollary. 

Corollary. The minimum OFV of the problem P2 is 
equal to the minimum OFV of the problem 

P4: minimize n 
subject to (3.4) and 

x a i j = N ,  j =  1 , 2, . . . , k' ,  (3.12) 
i =  1 

where 
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We have reduced the problem of computing SP to one where the zij's are constrained by (3.4) and 
of enumerating all the basic feasible solutions of the con- 
straints (3.11) and (3.12), and selecting one which mini- 
mizes (3.10). For r x c tables where r 5 5 and c is ar- 
bitrary we can show that there cannot be more than 150 
basic feasible solutions for the constraints (3.11) and 
(3.12), at any node in the network. Moreover, each basic 
feasible solution is easily obtained by solving a triangular 
system of linear equations. 

Theorems 1 ,2 ,  and 3 enable us to compute LP and SP, 
provided the column totals are all equal to N. If this re- 
striction is removed we can still use these theorems to and N = max(C1, C2, . . . , Ck). 
obtain a lower bound for SP and an upper bound for LP. Then 

Theorem 4 .  Let SP and LP be the minimum and max- 
imum values, respectively, of 

k 

where the yij's are constrained by (3.4) and (3.21) 
r 

C, Yij= C j , j =  1 , 2 , .  . . , k ,  (3. lb) 
i =  I Proof. Let A = {aij, i = 1, 2, . . . , r ,j = 1, 2, . . . , 

k k) be a minimizing solution of (3.13) subject to (3.4), (3.14) x Y . .rJ = R.lk , l' = 1 , 2, . . . , r .  (3.15) and(3.15).Thentheextension{aij,i = 1 , 2 , .  . . , r  + 1, 
j= l j = 1, 2, . . . ,k) where a,+ = N - Cj for all j satisfies 

Let SP' and LP' be the minimum and maximum values, the constraints (3.4), (3.17), (3.18), (3.19). The value of 
respectively, of (3.16) with this solution simplifies to 

Table 1. Computational Experience with the Network Algorithm on Problems of Varying Size 

Problems Contingency Table Exact 

p Value 

x2-approx. 

CPU Time (minutes) 

Network Pagano/Halvorsen 
# of Tables in the 

Reference Setb 

1  1 1 1 0 0 0 1 3 3  
4 4 4 4 4 4 4 1  1  

,0680 ,0605 .02 .49 40,500 

2 2 0 1  2 6  
1 3 1 1 1  
1 0 3 1 0  
1 2 1 2 0  

,091 1  ,0932 .24 35.67 1.1 x lo6 

3  2 0 1 2 6 5  
1 3 1 1 1 2  
1 0 3 1  0 0  
1 2 1  2 0 0  

,0454 ,0666 1.15 Infeasiblea 68 x lo6 

4 1 1 1 0 0 0 1 2 4  
4 4 4 5 5 5 6 5 0  
1 1 1 0 0 0 1 2 4  

,0354 ,0935 5.34 Infeasiblea 624 x lo6 

5  1 2 2 1  1 0  
2 0 0 2 3 0  
0 1 1 1 2 7  
1 1  2 0 0 0  
0 1 1 1 1 0  

,0258 ,0771 3.04 lnfeasi blea 1.6 x lo9 

6  1 2 2 1 1 0 1  
2  0  0  2  3  0  0  
0 1 1 1 2 7 3  
1 1 2 0 0 0 1  

,0393 ,121 3  14.09 lnfeasi blea 64 x lo9 

0 1 1 1 1 0 0  

a Failed to compute the exact p value within 180 CPU minutes. 
Estimated by the method of Gail and Mantel (1977). 
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so that 

The proof for LP' is similar. 
Thus we can compute SP' and LP' with the help of 

Theorems 1, 2, and 3 and we can always bound SP and 
LP when the Cj's are not equal. The computations in the 
next section demonstrate that these bounds perform sat- 
isfactorily. 

4. COMPUTATIONAL EXPERIENCE 
Exact p values were computed by the Network algo- 

rithm for problems of varying size. The results are dis- 
played in Table 1. Where possible the CPU minutes used 
by Network have been compared with the corresponding 
CPU minutes used by the algorithm of Pagano and Hal- 
vorsen (1981). Both algorithms have been programmed 
on a DEC-2060 computer. The algorithm developed by 
Pagano and Halvorsen is most appropriate for these com- 
parisons because their approach already yields substan- 
tial improvements over previously published approaches 
to this problem. Table 1 shows that Network considerably 
extends the bounds of computational feasibility for exact 
tests of significance in r x c contingency tables. Sparse 
matrices with greater than 20 cells are infeasible using 
the algorithm of Pagano and Halvorsen (because the CPU 
times exceed 180 minutes) but are easily evaluated by 
Network. The last column of Table 1 provides an estimate 
of the number of tables in the reference set 9corre-
sponding to each problem. This estimate was computed 
by a technique due to Gail and Mantel (1977) and it ex- 
plains why explicit enumeration soon becomes compu- 
tationally infeasible. Note also that for many of these 
problems the exact and approximate p value would lead 
to quite different inferences about row and column in- 
dependence. 

Table 1 does not provide a good estimate of the CPU 
ratio for the two algorithms because most of the problems 

Table 2. A Comparison of the Network and the  
Pagano/Halvorsen Algorithms for a Variety of r x  c  

Contingency Tables  

Size of CPU Seconds CPU Seconds 
r x c Table Network Pagano/Halvorsen CPU Ratio 
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considered were too large to be handled by the Pagano- 
Halvorsen algorithm. Therefore, a number of smaller 
problems were also considered. Table 2 shows that the 
Network algorithm performs uniformly better for all these 
problems and the CPU ratio increases dramatically with 
the size of the problem. 

5. DISCUSSION 
We have demonstrated that an important but rather 

difficult computational problem in hypothesis testing can 
be successfully approached if it is reformulated in terms 
of enumerating paths through a network. The network 
has interesting structural properties that lead to a closed- 
form upper bound for LP, the longest path from any node 
to the terminal node. The corresponding lower bound for 
SP, the shortest path, is easily evaluated as a basic fea- 
sible solution to a set of constraints that arise more com- 
monly in the transportation problem of linear program- 
ming. 

The computational results displayed in Table 1 (espe-
cially problem 6) show that for sparse contingency tables, 
fairly large differences can exist between the p values 
generated by Fisher's exact test and by Pearson's X 2  test. 
This was previously demonstrated for r x 1 contingency 
tables with small expectations (Chapman 1976). Infer- 
ences based on the X 2  test might, therefore, be misleading 
whereas absolute reliance can be placed on the signifi- 
cance level generated by Fisher's exact test. This does 
not imply that Fisher's is the only procedure yielding an 
exact p value. There are several alternative methods. In 
general, we may define a discrepancy measure d :  9+54 
as a function that assigns a real number to each con- 
tingency table in the reference set 9.If X is the observed 
table, an exact test is defined by p = zyEyP (Y )where 
9 = {Y: Y E 3 and d(Y) r d(X)). For Fisher's exact 
test d(X) = lIP(X). Two other commonly used discrep- 
ancy measures are Pearson's X2 statistic and the likeli- 
hood ratio statistic, -2 log R.  (See, for example, Chap- 
man 1976). For 2 x 2 contingency tables, the randomized 
version of Fisher's procedure yields a uniformly most 
powerful unbiased test (Lehmann 1959). However, for 
higher dimensional tables, no such optimal property has 
been demonstrated so that any of the above three dis- 
crepancy measures appears reasonable. The network al- 
gorithm adapts itself to all three discrepancy measures. 
In particular, equations (2.2), (2.3), and (2.4) are un- 
changed but different optimization problems must be 
solved in order to bound LP and SP for each discrepancy 
measure. Alternatively, dynamic programming in a single 
backward pass through the network is usually an efficient 
way to compute LP and SP exactly, regardless of the 
discrepancy measure. This technique will be feasible pro- 
vided the number of nodes in the network is kept within 
reasonable bounds. 

Finally, as the cell expectations become large, all three 
exact tests converge to the X 2  test. Bishop, Fienberg, and 
Holland (1975, Ch. 14) showed this for Pearson's X2 and 
the likelihood ratio, -2 log R .  The convergence of Fish- 
er's exact test to the X 2  can be demonstrated by gener- 
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alizing Van der Waerden's (1957,Sec. 49.7) results. Tra- 
ditionally, Cochran's (1954)guidelines have been used to 
decide whether the X 2  test will yield a reliable p value. 
It is suspected, however, that Cochran's guidelines are 
conservative (see, for example, Yarnold 1970). There-
fore, it would be instructive to make an empirical com- 
parison of the X 2  and various exact tests along the lines 
of Haber (1980). Computational feasibility is no longer 
the major obstacle to such an investigation. 

It is worth pointing out that the network algorithm can 
be applied to a variety of exact permutation tests. The 
basic approach of constructing a network of nodes and 
arcs and testing conditions of the form of (2.2), (2.3) at 
each node does not depend in any way on the special 
structure of the r x c contingency table. Analogous net- 
works can be constructed for several problems of which 
the following are a representative subset: exact tests of 
hypothesis concerning the relative risk in k 2 x 2 con-
tingency tables (Zelen 1971); exact permutation distri- 
butions for the Wilcoxon statistic and the logrank statis- 
tic; distribution free tests for one- and two-way layouts. 
These and other related problems will be investigated in 
future papers. 

Many important and interesting details of implemen- 
tation have not been discussed here in the interests of 
presenting only the main features of our algorithm. The 
following notable omissions will be discussed elsewhere: 

1. the ability to trade off accuracy against CPU time 
by specifying in advance the number of decimals to which 
the p value should be correct, 

2. the ability to collapse into a single node all nodes 
at stage k for which ( R Ik ,  R Z k ,. . . ,Rrk)are permutations 
of each other, 

3 .  the use of hashing with linear probing (Knuth 1973) 
for the identification, storage, and retrieval of nodes that 
are permutations of each other, 

4. the use of spanning trees (Murty 1976, pp. 289-310) 
to enumerate all basic feasible solutions, 

5. the ability to collapse rows of the contingency table 
so as to limit the number of basic feasible solutions to at 
most 150 at each node. 

APPENDIX 

We wish to show that the sum of all path lengths from 
node ( k ,  R l k ,  . . . , Rrk)to node (0,  0 ,  . . . , 0)  is given 
by ( C I  + C2 + ... + Ck)!lRlk!  R z ~ !  Rrk! .TO prove ' . +  

this result we use induction on k .  Fork  = 1, this is clearly 
true. Suppose that the result is true for k - 1. We must 
then show that it is true for k. We can express the sum 
of all path lengths from ( k , R l k ,  . . . ,Rrk)to (0,  0 ,  . . . , 
0 )  as 

Ck!  
ylk!yZk! " '  yrk!1  

r ~ u mof all path lengths from 1 

where we are summing over all y l k  + y2k + .- + yrk = 
Cx. By the induction hypothesis this expression is equal 
to 

Ck!  
Y I ~ ! Y Z ~ !yrk!I . . +  

(Cl + CZ + ... + Ck)! 
(Rlk - - Y Z ~ ) !"' (Rrk -Y I ~ ) ! ( R z ~  yrk)!I 

Notice that 

To  see this, compare the coefficient of tC"n both sides 
of the following identity: 

Moreover, this network is so constructed that R I A+ R Z X  
+ ... + R,,: = C I  + Cz + ... C x .Therefore, 

and the desired result holds for k .  

[Received July 1981. Revised March 1982.1 
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