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SUMMARY

This paper discusses the benefits and limitations of adaptive sample size re-estimation for phase 3 confirmatory clinical
trials. Comparisons are made with more traditional fixed sample and group sequential designs. It is seen that the real
benefit of the adaptive approach arises through the ability to invest sample size resources into the trial in stages. The
trial starts with a small up-front sample size commitment. Additional sample size resources are committed to the trial
only if promising results are obtained at an interim analysis. This strategy is shown through examples of actual trials,
one in neurology and one in cardiology, to be more advantageous than the fixed sample or group sequential approaches
in certain settings. A major factor that has generated controversy and inhibited more widespread use of these methods
has been their reliance on non-standard tests and p-values for preserving the type-1 error. If, however, the sample size is
only increased when interim results are promising, one can dispense with these non-standard methods of inference.
Therefore, in the spirit of making adaptive increases in trial size more widely appealing and readily implementable we
here define those promising circumstances in which a conventional final inference can be performed while preserving the
overall type-1 error. Methodological, regulatory and operational issues are examined. Copyright c© 2000 John Wiley &
Sons, Ltd.

KEY WORDS: sample size re-estimation, two-stage designs, flexible clinical trials, conditional power, adaptive
design, real examples.

1. Introduction

The sample size of a clinical trial is usually determined by statistical power calculations. Often, however, there
is uncertainty and debate as to what magnitude of alternative hypothesis treatment difference and
between-patient variability it is appropriate to pre-specify. Hence there exist methods to facilitate re-estimation
of the sample size in the light of interim results from the ongoing trial. Statistical methods based only on
interim estimates of between-patient variability, see Mehta and Tsiatis [1], are well understood and are not the
focus of this article. We are concerned here with adaptive sample size re-estimation in confirmatory phase 3
trials based on unblinded interim estimates of the primary effect size. This controversial topic generates two
areas of concern: 1) the need for a robust statistical methodology for sample size re-estimation and its
consequences for making inferences from the final trial data, and 2) the practical organization of such an
adaptive approach paying due regard to the confidentiality of interim data and the need to preserve the
integrity of the trial’s conduct throughout. Accordingly, any proposed adaptive re-estimation needs meticulous
planning both in methodology and practicalities, which all needs documenting in a pre-defined Adaptive
Charter. This is particularly important in pivotal phase 3 trials for regulatory approval.
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Amongst the many methodological articles on adaptive sample size re-estimation, a focus has been on the need
to preserve the overall type I error at the time of the final analysis. Bauer and Köhne [2] and Lehmecher and
Wassmer [3] approached this problem by combining the p-values, obtained before and after the adaptation,
with pre-specified weights. Cui, Hung and Wang [4] proposed an equivalent approach in which the Wald
statistics are combined with pre-specified weights. Müller and Schäfer [5] showed that the overall type-1 error
can be preserved unconditionally under any general adaptive change provided the conditional type-1 error that
would have been obtained had there been no adaptation is preserved. This specializes to the method of Cui,
Hung and Wang [4] if the only adaptive change is a sample size re-estimation. All the above adaptive methods
of increasing the sample size require a non-standard final analysis in which the outcomes of patients enrolled
before the unblinded interim analysis are treated differently from those of patients enrolled after the unblinded
interim analysis. This could lead to practical difficulties in presenting trial findings in journals and regulatory
submissions, because there is an attractive straightforward need to report conventional hypothesis tests and
p-values, uncluttered by complex statistical adjustments. Chen, DeMets and Lan [6] took the first step in this
direction by showing that if one increases the sample size only when interim results are promising, a
conventional hypothesis test can be performed without inflating the type-1 error. Gao, Ware and Mehta [7]
extended this idea to a broader range of promising zones in which such conventional tests may be performed.
Posch, Bauer and Brannath [8] touched on the same issue indirectly by identifying so-called inconsistency
regions in the sample space of the first stage statistic where it is possible for the final analysis based on the
adaptive test to reject the null hypothesis while the conventional test will accept. Brannath, Koenig and
Bauer [9] extended these regions to the more complicated case of comparing two treatments with a common
control.

This paper makes the work of Gao, Ware and Mehta [7] more accessible to practioners by presenting it in the
context of two-stage designs and tabulating explicit cut-off values for the promising region under different
adaptive rules based on conditional power. The method is then applied to two actual case studies where it
highlights the real benefit that these adaptive methods bring to the design of confirmatory phase 3 trials. The
standard approach for powering such studies is to first estimate the underlying treatment effect for the primary
endpoint from past studies in similar settings and use this estimate to compute the sample size needed for
adequate power. There is usually considerable uncertainty associated with this estimate, however. This may be
due to limited experience with the new compound, small sample sizes in the previous studies, changes in
quality of care, lack of comparability between the old and new patient populations, use of a different primary
endpoint, and numerous other factors. It is sometimes suggested that rather than attempt to estimate the
treatment effect prior to launching the study, it might be more useful to specify the smallest treatment effect
that is considered clinically meaningful and power the study to detect this effect. This approach too has its
drawbacks. Even assuming that it is possible to identify the smallest clinically meaningful effect, the sample
size required to detect that effect might be unacceptably large thereby rendering the trial infeasible. Designing
for the smallest clinically meaningful effect has the additional drawback that if the true treatment effect is
larger, the trial might be substantially overpowered. One option is to utilize the group sequential design
whereby the trial will be terminated early with a smaller sample size if in truth the treatment effect is larger
than the smallest clinically meaningful difference. An alternative approach that could be used either in place of,
or in conjunction with the group sequential approach is the adaptive approach, wherein one starts out with a
smaller sample size commitment which may be increased at an interim analysis if the results obtained are
reasonably promising. In this method the risk of an underpowered study is reduced since there is an
opportunity to review the initial sample size and adjust it based on data from the study itself. Just as
important, since the additional sample size investment is only called for if the interim results are promising, it
greatly increases the chances of eventual success and reduces the risk of an expensive failed study. The two case
studies compare the group sequential and adaptive strategies and highlight the real benefits that the latter
brings to the design in settings where it is simply infeasible commit a large sample size up-front. These benefits
have not been highlighted in this manner before.

In Section 2 we review the statistical methodology pertinent to adaptive sample size re-estimation. In Section 3
we discuss the applicability of this methodology to actual trials, paying attention to practical concerns. In
Section 4 we illustrate its use with two real examples, highlighting the importance of both analytic results and
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simulation studies. Section 5 deals with regulatory and operational issues. Finally, in Section 6, we disscuss the
wider context of using such an approach routinely in phase 3 trials.

2. Statistical Methods

The methods of this paper are applicable to two-arm, multi-stage group sequential trials of normal, binomial
and survival endpoints, in which the sample size adaptation is performed at the penultimate stage. In order to
simplify the exposition, however, we shall confine our discussion to two-stage trials. Subjects enter the trial one
at a time and are randomized to either the control or experimental arms. Subject responses are assumed to be
independent, identically distributed random variables. We will assume normality with equal variances to aid
theoretical developments, though the principles relate more broadly. Specifically, let Xcj ∼ N(μc, σ) and
Xej ∼ N(μe, σ) denote the responses of subject j if randomized to the control or experimental arms,
respectively. Define the treatment difference δ = μe − μc. We are interested in a level-α hypothesis test of the
null hypothesis

H0: δ = 0

versus the one sided alternative hypothesis that δ > 0. To this end suppose we design a two-stage trial with
balanced treatment assignment, an interim analysis after n1 patients and a final analysis after n2 patients. We
assume initially that the interim analysis has just one purpose: to decide whether to increase the final sample
size to be greater than the original n2. The extension to early stopping for reasons of either efficacy or futility
will be discussed in Section 3.3. The sample size n2 required for a one-sided level-α fixed-sample test to attain
1 − β power at δ = δ1 is

n2 = 4σ2
[
zα + zβ

δ1

]2

(1)

where zu = Φ−1(1 − u). To maximize the information for adaptive decision making one would like n1 to be as
near as possible to n2 but, in practice, the follow-up needed to observe the primary outcome in each patient
relative to the speed of trial recruitment, and also the time needed to prepare for any potential sample size
increase, will both necessitate a somewhat earlier choice of n1.

Throughout this paper we shall distinguish all incremental quantities from cumulative ones with a “tilde”.
Thus ñ2 represents the incremental sample size between stage 1 and stage 2, whereas n2 = n1 + ñ2 represents
the cumulative sample size up to and including stage 2. Let δ̂1, δ̂2 and ˆ̃

δ2 be the maximum likelihood estimates
of δ based on corresponding n1, n2 and ñ2 subjects. Denote the cumulative Wald statistics at stages 1 and 2 by

Zj =
δ̂j

se(δ̂j)
, j = 1, 2, (2)

and the incremental Wald statistic at stage 2 by

Z̃2 =
ˆ̃
δj

se(ˆ̃δj)
, (3)

where, for balanced designs, the standard errors in the above expressions are given by se(δ̂j) = 2σ̂j/
√

nj and

se(ˆ̃δj) = 2ˆ̃σj/
√

ñj . A level-α test will reject H0 at the final analysis if Z2 ≥ zα and the trial is not adaptive.

2.1. Sample Size Re-Estimation Using a Weighted Statistic

When an unblinded interim analyis is performed at the end of stage 1, as a consequence the cumulative and
incremental sample sizes might be increased to n∗

2 and ñ∗
2, respectively, resulting in corresponding Wald

statistics Z∗
2 and Z̃∗

2 , as defined by equations (2) and (3) with n2 replaced by n∗
2 and ñ2 replaced by ñ∗

2. A
conventional final analysis would reject H0 if Z∗

2 ≥ zα. However, Cui, Hung and Wang [4] have shown, by
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simulation in the more general group sequential setting, that when the sample size is increased in a data
dependent manner from n2 to n∗

2, it is possible to have P0(Z∗
2 ≥ zα) > α, thus resulting in an inflation of

type-1 error if the conventional final analysis is adopted. A similar result was shown analytically by Proschan
and Hunsberger [10].

Cui, Hung and Wang [4] have shown that, regardless of the rule for altering the stage 2 sample size, if the
conventional Wald statistic Z∗

2 is replaced by the CHW statistic

Z∗
2,chw =

√
n1

n2
Z1 +

√
ñ2

n2
Z̃∗

2 (4)

then the type-1 error is preserved. That is, P0(Z∗
2,chw ≥ zα) = α.

Now although the CHW statistic (4) guarantees preservation of the type-1 error, it has the undesirable
property of downweighting the contribution of the ñ∗

2 > ñ2 patients evaluated after the interim analysis.
(Notice that Z̃∗

2 is weighted in proportion to
√

ñ2 and not
√

ñ∗
2 in equation (4)). This contradicts the common

sense premise that “all patients are equal”.

2.2. Sample Size Re-Estimation Using the Conventional Statistic

Chen, DeMets and Lan [6] showed that if one increases the sample size only when the interim result is
promising, the type-1 error is not inflated by use of the conventional Wald statistic Z∗

2 . Specifically, let

CPδ(z1, ñ2) = Pδ(Z2 ≥ zα|z1) (5)

denote the conditional power, or conditional probability of rejecting H0 at the final analysis given Z1 = z1.
Since δ is unknown, it is usual and convenient to replace it with δ̂1 in equation (5). That is, conditional power
is calculated assuming that the estimated treatment difference at interim analysis is the true effect. We shall
see later that for our purposes this is preferable to evaluating conditional power at the planned value δ1, as
recommended by, for example, Bauer and Koenig [11].

It can then be shown that

CPδ̂1
(z1, ñ2) = 1 − Φ

(
zα

√
n2 − z1

√
n1√

ñ2
− z1

√
ñ2√

n1

)
. (6)

Chen, DeMets and Lan [6] have shown that, provided CPδ̂1
(z1, ñ2) ≥ 0.5, one may increase the stage-2 sample

size from ñ2 to ñ∗
2 and nevertheless use the conventional statistic Z∗

2 for the final analysis, and the type-1 error
will not be inflated. Gao, Ware and Mehta [7] gave further insight into this finding and extended it to
situations where CPδ̂(z1, ñ2) was somewhat less than 50%. Exactly how far below 50% conditional power
depends on specific circumstances which we will quantify in Section 3.2.

3. A Simple Approach to Adaptive Sample Size Increase

If adaptive sample size re-estimation methods are to be widely and wisely used in phase 3 trials, we need to
encourage simple, transparent and robust approaches that appeal to experienced trialists and sponsors without
requiring them to have an in-depth understanding of technical statistical methodology. It is with that goal in
mind that we elucidate our adaptive approach.

3.1. Defining the Adaptive Algorithm: General Principles

The key idea is to evaluate conditional power at the interim look. If it is either too low or too high, we do not
alter the sample size. If however, conditional power falls in a range that we deem promising, then the sample
size may be increased, subject to a pre-determined upper limit, so as to boost the conditional power up to some
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target level. In this article, we will be targetting the value 1 − β for the boosted conditional power (typically
80% or 90%), though other values could just as well be selected. Note that this conditional power is for the
observed interim estimate δ̂1 and not the originally planned δ1. Accordingly let nmax be a pre-specified
maximum allowable sample size for the trial, typically determined by the sponsor’s budgetary limits and
feasibility of recruitment. In order to determine the new sample size n∗

2 ≤ nmax we partition the sample space
of attainable CPδ̂1

(z1, ñ2) values into three zones – Favorable, Promising and Unfavorable. We propose the
following guidelines for sample size increase, depending on the zone into which CPδ̂1

(z1, ñ2) falls at the interim
look.

Unfavorable: CPδ̂1
(z1, ñ2) < CPmin defines the unfavorable zone, where CPmin is a fairly low probability,

either pre-declared (e.g. 30% or 50%, say) or computed by an algorithm such as that described in
Section 3.2. Implicit here is that the interim result is so disappointing that it is not worth increasing the
sample size to retrieve conditional power. In this zone one continues to the original n2.

Promising: CPmin ≤ CPδ̂1
(z1, ñ2) < 1 − β defines the promising zone. In this zone the interim result is not

disappointing, but it is not good enough for the conditional power to equal or exceed the unconditional
power 1 − β specified at the design stage. In that case the sample size is increased by just the right
amount to recover the targeted power 1 − β, subject to not exceeding nmax. Specifically, the new sample
size is increased to

n∗
2(z1) = min(n′

2(z1), nmax) , (7)

where ñ′
2(z1) satisfies the condition

CPδ̂1
(z1, ñ

′
2) = 1 − β . (8)

A simplification of equation (5) of Gao, Ware and Mehta [7] shows that (8) is satisfied by the function

ñ′
2(z1) = [

n1

z2
1
]
[
zα

√
n2 − z1

√
n1√

n2 − n1
+ zβ

]2

. (9)

Favorable CPδ̂1
(z1, ñ2) ≥ 1 − β defines the favorable zone. In this zone the interim results are sufficiently

favorable that the trial continues to the original n2 without the need to adaptively increase the trial size.
Note that this favorable zone includes all values of δ̂1 ≥ δ1, but also extends downwards to values of δ̂1
slightly smaller than δ1, the value of δ at which the trial was originally powered.

We require that the chosen value of CPmin must not be so small as to result in an inflated overall type-1 error
using a conventional final analysis. We shall show in Section 3.2 that the smallest CPmin satisfying this
requirement depends on the ratios nmax/n2 and n1/n2, and on the targeted power 1 − β. Table I displays
smallest CPmin values for some typical two-stage designs. It should be noted that the range
CPmin ≤ CPδ̂1

(z1,ñ2) < 1 − β represents the outer limits of the promising zone. The user is free to restrict
sample size increases to a subset of this range if desired, though that will somewhat reduce somewhat the
trial’s overall power.

A schematic representation of the adaptive algorithm for sample size increase is displayed in Figure 1 for the
situation where nmax/n2 = 2, n1/n2 = 0.5, and 1 − β = 0.9. Note that up to a doubling in trial size may well be
a realistic maximum in many adaptive trials. For this design, Table I shows that CPmin = 0.36. Hence the
promising zone is defined by 0.36 ≤ CPδ̂1

(z1,ñ2) < 0.9.

While the determination of the favorable, promising and unfavorable zones relates to conditional power, these
zones can also be expressed in terms of z1 via equation (6) and in terms of δ̂1/δ1 through the relationship

δ̂1

δ1
=

[
z1

zα + zβ

]√
n1

n2
.

For instance, in Figure 1 the promising zone is also defined by 1.206 ≤ z1 < 2.027, and by
0.526 ≤ δ̂1/δ1 < 0.884.
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Figure 1. Partitioning of Interim Result into Zones(†) and % Sample Size Increase in Each Zone: An
Illustrative Example where nmax/n2 = 2, n1/n2 = 0.5, one-sided α = 0.025, and 1 − β = 0.9.

(†) The promising zone is defined by 0.36 ≤ CPδ̂1
(z1, ñ2) < 0.9 on the Conditional Power scale, by 1.206 ≤ z1 < 2.027 on the z1

scale, and by 0.526 ≤ δ̂1/δ1 < 0.884 on the δ̂1/δ1 scale.

3.2. Justifying the Use of a Conventional Final Analysis

We have stated in Section 2.2 that if the sample size is increased in a data dependent manner from n2 to n∗
2,

the CHW test (Z∗
2,chw ≥ zα) always protects the type-1 error whereas the conventional test Z∗

2 ≥ zα does not
carry this universal guarantee. If, however, the sample size is only increased when the interim conditional power
falls within a certain “promising zone” then the conventional test will indeed protect the type-1 error. Let us
now determine what that promising zone needs to be.

Lemma 1: Suppose that, upon observing Z1 = z1 at the interim look, the incremental sample size is altered
from ñ2 to ñ∗

2. Then, regardless of the formula used to compute ñ∗
2,

P0(Z∗
2 ≥ b(z1, ñ

∗
2)) = α , (10)

where

b(z1, ñ
∗
2) = (n∗

2)
−0.5

[√
ñ∗

2

ñ2
(zα

√
n2 − z1

√
n1) + z1

√
n1

]
. (11)
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The proof is given in Gao, Ware and Mehta [7]. Note that if the sample size is not altered, then ñ∗
2 = ñ2,

Z∗
2 = Z2, and b(z1, ñ

∗
2) = zα.

The lemma implies that if the sample size is altered at the interim analysis, one may nevertheless use the
conventional test statistic Z∗

2 for a level-α test at the final analysis provided the critical boundary zα is
replaced by b(z1, ñ

∗
2). However, in keeping with our philosophy of having a simple, straightforward final analysis

we would prefer to use the test Z∗
2 ≥ zα rather than Z∗

2 ≥ b(z1, ñ
∗
2) for rejecting H0. To make this possible

without inflating the type-1 error we define the promising zone as the set

P = {CPδ̂1
(z1, ñ2): b(z1, ñ

∗
2(z1)) ≤ zα} , (12)

where the altered sample size ñ∗
2(z1) is made to depend explicitly on z1 via equation (7). Note that the

promising zone is identified ahead of time, before any data are unblinded. We then pre-specify that we will
increase the incremental sample size from ñ2 to ñ∗

2(z1) only if the observed value Z1 = z1 at the interim
analysis is such that CPδ̂1

(z1, ñ2) ∈ P. Otherwise the incremental sample size will remain unaltered at ñ2. It
then follows that

α = P0(Z∗
2 ≥ b(z1, ñ

∗
2(z1)) ≥ P0(Z∗

2 ≥ zα) , (13)

thus ensuring that the type-1 error will be preserved conservatively if we use the conventional test Z∗
2 ≥ zα for

the final analysis.

This adaptive strategy requires us to identify the promising zone P prior to unblinding the interim results, as
follows. For any given value of CPδ̂1

(z1, ñ2) ∈ (0, 1) one can find the required value of z1 using equation (6).
One then computes n∗

2(z1) using equations (7) to (9). Then substitute these values of z1 and n∗
2(z1) into

equation (11) to obtain b(z1, ñ
∗
2). By repeating these calculations across the entire range of

CPδ̂1
(z1, ñ2) ∈ (0, 1), one can plot CPδ̂1

(z1, ñ2) versus b(z1, ñ
∗
2(z1)). Then P is characterized by the region of

the curve that lies below zα.

Figure 2 displays plots of b(z1, ñ
∗
2(z1)) versus CPδ̂1

(z1, ñ2) for ratios of nmax/n2 = (1, 1.5, 2, 3,∞). All plots are
for the case α = 0.025 (1-sided), 1 − β = 0.9 and n1/n2 = 0.5.

Note that the curve in Figure 2 representing nmax/n2 = 1 is actually the line zα = 1.96. The curves for the
other nmax/n2 ratios intersect the zα = 1.96 line in two places. The left intersection point, representing the
start of the promising zone, is CPmin. It is different for each nmax/n2 curve, being about 0.31 for the
nmax/n2 = ∞ curve, and increasing to 0.5 as nmax/n2 approaches 1. The right intersection point, representing
the end of the promising zone, is equal to 1 − β for all the curves. The promising zone is the region of
CPδ̂1

(z1, ñ2) where the nmax/n2 curve dips below the zα = 1.96 line. Since the right intersection point is always
1 − β, each promising zone is completely specified by its left intersection point, which is the CPmin cut-off value.

Table I provides CPmin cut-off values for some typical two-stage adaptive designs. For example, if nmax/n2 = 2,
n1/n2 = 0.5 and the target conditional power value is 1 − β = 0.9, then the promising zone is
0.36 ≤ CPδ̂1

(z1, ñ2) < 0.9. In this range it is permissible to increase the sample size so as to achieve the target
conditional power of 0.9, subject to the cap nmax = 2n2, and nevertheless use conventional test Z∗

2 ≥ 1.96 for
the final analysis. Although equation (13) suggests that the use of the conventional test in this setting might be
conservative, the example in Section 4.1 shows that the conservatism is negligible.

3.3. Early Stopping for Efficacy or Futility at Stage 1

The methods discussed above readily generalize to two-stage designs with possible early stopping at Stage 1.
Using standard group-sequential methods (for example, Jennison and Turnbull [12]) we can construct a
two-stage, one-sided, level-α, group sequential trial with futility boundaries (a1, a2), efficacy boundaries (b1, b2)
and cumulative sample sizes (n1, n2) such that a2 = b2, and

P0(Z1 ≥ b1) + P0(a1 < Z1 < b1, Z2 ≥ b2) = α , (14)

Pδ1(Z1 ≤ a1) + Pδ1(a1 < Z1 < b1, Z2 ≤ a2) = β . (15)
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8 CYRUS MEHTA, STUART POCOCK

Figure 2. Plots of b(z1, ñ
∗
2(z1)) versus CPδ̂1

(z1, ñ2) for ratios of nmax/n2 = (1, 1.5, 2, 3, ∞) given
α = 0.025 (1-sided), 1 − β = 0.9 and n1/n2 = 0.5

Then the trial would stop early for efficacy if Z1 ≥ b1 and for futility if Z1 ≤ a1. By forcing a2 = b2 in the
construction of the boundaries, one is assured of an unambiguous decision at the end of the trial; reject H0 if
Z2 ≥ b2, otherwise accept H0. Equation (14) ensures that the type-1 error of this group sequential trial equals
α, while equation (15) ensures that its power remains 1 − β.

All the results of Section 3 will carry over provided we replace zα by b2 in every formula that contains zα.

4. Two Case Studies

We illustrate the methods described above by applying them to the design of two phase 3 clinical trials, one for
a continuous primary efficacy endpoint and the other for a binomial primary efficacy endpoint. These two case
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ADAPTIVE INCREASE IN SAMPLE SIZE WHEN INTERIM RESULTS ARE PROMISING 9

Table I. CPmin Cut-Off Values for Some Typical Two-Stage Adaptive Designs with no Early Stopping
either for Efficacy or Futility

Sample Size Ratios CPmin Values for Targeted
Maximum Allowed At Interim Look Conditional Powers

(nmax/n2) (n1/n2) 80% 90%
1.5 0.25 0.42 0.42
1.5 0.5 0.41 0.41
1.5 0.75 0.38 0.38
2 0.25 0.37 0.37
2 0.5 0.36 0.36
2 0.75 0.33 0.33
3 0.25 0.32 0.32
3 0.5 0.31 0.31
3 0.75 0.30 0.27
∞ 0.25 0.32 0.28
∞ 0.5 0.31 0.27
∞ 0.75 0.30 0.25

studies refer to actual trials. For reasons of confidentiality some details, such as the identities of the trial
sponsors and the names of the test drugs are omitted.

4.1. A Schizophrenia Trial

Consider a randomized phase 3 trial of a test drug versus an active comparator for patients with negative
symptoms schizophrenia. The primary efficacy endpoint is the improvement from baseline to week 26 in the
Negative Symptoms Assessment (NSA) a standardized score, to be analyzed as a quantitive variable. The
planned trial size, n2 = 442, was based on having 80% power to detect a mean score difference δ1 = 2 with a
one sided level-0.025 test, assuming a score standard deviation σ = 7.5 in each treatment group. The true value
of δ could be less than 2; a value as low as 1.6 would still be considered clinically meaningful, but would require
a trial size of 690 subjects. The operating characteristics of Plan 1 (fixed sample size of 442) and Plan 2 (fixed
sample size of 690) are displayed side by side in Table II for values of δ between 1.6 and 2.0. If resources were

Table II. Operating Characteristics of Plan 1 and Plan 2

Plan 1 Plan 2
δ Sample Size Power Sample Size Power

1.6 442 61% 690 80%
1.7 442 66% 690 85%
1.8 442 71% 690 88%
1.9 442 76% 690 91%
2.0 442 80% 690 93%

plentiful, Plan 2 would clearly be the preferred option. The sponsor must, however, allocate scarce resources
over a number of studies and in any case is not in favor of designing an overpowered trial. This leads naturally
to considering a design that might be more flexible with respect to sample size than either of the above two
single-look fixed sample designs. We will consider two types of flexible designs; group sequential and adaptive.
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Group Sequential Design
When sample size flexibility is desired for late-stage trials, it is often appropriate to first explore the group
sequential option. Let Plan 3 be a group sequential design with one interim look and 80% power to detect
δ = 1.6 such that if in fact δ = 2, the trial will stop early. While this would appear to be an attractive option, it
is important to consider not just the saving in study duration but also the saving in the actual number of
subjects randomized to the study. Since the efficacy endpoint for this trial will only be observed at week 26, the
actual saving in sample size will be affected by the enrollment rate. In the current study it is anticipated that
subjects will enroll at an average rate of 8 per week. The number of subjects enrolled and the number of
completers over time are displayed graphically in Figure 3 Observe that there is a 26-week horizontal

Figure 3. Impact of Enrollment Rate and Length of Follow-Up on Trial Completion

separation between the two parallel lines depicting, respectively, the graph for enrollment and the graph for
study completion. This 26-week gap must be taken into consideration when evaluating the savings achieved by
utilizing a group sequential design.

The two major design parameters to be specified for Plan 3 are the timing of the interim analysis and the
amount of type-1 error to be spent. We will assume that data must be available for at least 200 completers
before the trial can be terminated for efficacy so that an adequate safety profile may be developed for the study
drugs. Therefore a suitable time point for the interim analysis is week 52, when we will have enrolled 416
subjects with complete 26-week data on 208 subjects and partial data on the remaining 208 subjects. These 208
subjects with partial data are referred to as the “overruns”. It is generally held that the type-1 error should be
spent conservatively in the early stages of a trial so as to ensure that results based on premature termination
will be compelling and have the capacity to change medical practice (see Pocock, 2005). Suppose then that we
use the γ(−4) error spending function proposed by Hwang, Shih and DeCani citehwang-1990 to obtain the
early stopping boundary. The boundary thus produced resembles the conservative O’Brien-Fleming [13]
boundary. Its nominal critical point for early stopping is 3.067 standard deviations. The one sided p-value
corresponding to this early stopping boundary is 1 − Φ(3.067) = 0.0011 which, if met, would indeed be
compelling enough to justify premature termination. In order to maintain 80% power to detect δ = 1.6 with
this spending function we require the maximum sample size of Plan 3 to be 694, a slight inflation from the
corresponding fixed sample Plan 2. Plan 3, however has a lower expected sample size because of the possibility
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of early stopping. The power and expected sample size values of the group sequential Plan 3 (with and without
adjustment for the overruns) are displayed in Table III for different choices of δ alongside corresponding power
and sample size values for the fixed sample Plan 2. It is seen from Table III that Plan 3 offers a modest benefit

Table III. Operating Characteristics of Plan3 (Group Sequential) and Plan2 (Fixed Sample)

Plan3 (Group Sequential) Plan2
Probability of Expected Sample Size (Fixed Sample)

δ Early Stopping No Overruns With Overruns Power SampSiz Power
1.6 6.6% 663 676 80% 690 80%
1.7 7.9% 657 672 85% 690 85%
1.8 9.3% 650 668 88% 690 88%
1.9 11.0% 641 663 91% 690 91%
2.0 13.0% 632 658 94% 690 94%

relative to Plan 2. After accounting for the overruns, the expected sample sizes under Plan 3 range between 658
and 676 for corresponding values of δ between 2 and 1.6, as compared to a fixed sample size of 690 under
Plan2. This amounts to a sample size saving of between 2% and 5% for the group sequential method. In terms
of power, Plan 2 and Plan 3 are practically identical. Thus for the current trial a group sequential design with
conservative error spending offers no substantial advantage over a conventional single look design with a fixed
sample size. One is still faced with the dilemma of committing excessive sample size resources up front in order
to ensure adequate power at δ = 1.6, with limited prospects of saving on sample size in the event that δ = 2.

Adaptive Design The above difficulties lead us to consider whether Plan 1, which was intended to detect
δ = 2 with 80% power and hence does not have such a large up-front sample size commitment, might be
improved so as to provide some insurance against substantial power loss in the event that δ = 1.6. The adaptive
approach is suited to this purpose. Accordingly it is planned to undertake a 442 person trial with an interim
analysis after observing n1 = 208 completers, and to possibly increase the sample size if the interim results are
promising. There is no intention to stop early at n1 = 208, and the sponsor has set a maximal doubling of
sample size to nmax = 884.

The adaptive plan focuses on the estimate of conditional power CPδ̂1
(z1, ñ2) at the interim analysis n1 = 208

with the following choices, in which the lower cut-off value for the promising zone, CPmin = 0.365, was obtained
by a conservative extrapolation from Table I.

Favorable: If CPδ̂1
(z1, ñ2) ≥ 0.8 (or equivalently, δ̂1 ≥ 1.835), continue to n2 = 442.

Promising: If 0.365 ≤ CPδ̂1
(z1, ñ2) < 0.8 (or equivalently 1.219 ≤ δ̂1 < 1.835), increase sample size to

n∗
2 = min(n′

2, 884), where n′
2 is such that CPδ̂1

(z1, ñ
′
2) = 0.8.

Unfavorable: If CPδ̂1
(z1, ñ2) < 0.365 (or equivalently δ̂1 < 1.219), continue to n2 = 442.

Table IV displays power and expected sample sizes for selected values of δ between 1.6 and 2.0, based on
100,000 simulations of the adaptive design. For comparative purposes, corresponding power and sample size
values for the conventional fixed sample design are also displayed. The power of the adaptive design has
increased by 4% at δ = 1.6 and by 3% at δ = 2 compared to the fixed sample design. These power gains were
obtained at the cost of corresponding average sample size increases of between 10% and 12%. The gains in
power appear to be fairly modest, largely because, as shown in Table V, the chance that a sample size increase
will actually happen is only about 25%. However, the adaptive design offers a significant benefit in terms of risk
reduction, not reflected in Table IV. Table V reveals that on those promising occasions when an increase in
sample size does happen, the gain in conditional power compared to a fixed sample design is substantial. For
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Table IV. Operating Characteristics of Fixed Sample and Adaptive Designs

Value of Fixed Sample Design Plan 4 (Adaptive)
δ Power Expected SampleSize Power Expected Sample Size

1.6 61% 442 65% 499
1.7 66% 442 71% 498
1.8 71% 442 75% 497
1.9 76% 442 79% 494
2.0 80% 442 83% 491

All Plan 4 results are based on 100,000 simulated trials

example, for true δ = 1.6 the conditional power rises from 62% to 82%. This is a major attraction of the
adaptive design. The additional sample size resources are requested only if the interim results are promising, in
which case the study team can justify the extra investment since the chances of success are high. If the interim
results are either unfavorable or favorable, there is no extra investment and the sponsor is no worse off than
would be the case under the non-adaptive Plan 1.

Table V. Operating Characteristics of the Fixed Sample and Adaptive Designs, Conditional on Interim
Outcome

Probability Power Conditional on Expected
Interim of Interim Outcome Sample Size

δ Outcome Interim Outcome Fixed Adaptive Fixed Adaptive
Unfavorable 36% 30% 30% 442 442

1.6 Promising 23% 62% 82% 442 687
Favorable 41% 87% 87% 442 442

Unfavorable 32% 34% 34% 442 442
1.7 Promising 23% 67% 85% 442 685

Favorable 45% 89% 89% 442 442
Unfavorable 29% 38% 38% 442 442

1.8 Promising 23% 70% 88% 442 682
Favorable 49% 91% 91% 442 442

Unfavorable 26% 43% 43% 442 442
1.9 Promising 22% 74% 90% 442 679

Favorable 52% 93% 93% 442 442
Unfavorable 23% 47% 47% 442 442

2.0 Promising 21% 77% 92% 442 678
Favorable 56% 95% 95% 442 442

All results are based on 100,000 simulated trials

We have proven in Section 3.2 that the use of the conventional Wald statistic rather than the weighted CHW
statistic preserves they type-1 error conservatively. In fact the extent of the conservatism in this example is very
small; it is seen via simulation that the overall type-1 error is actually 0.024 and leads to negligible power loss.

4.2. A Placebo Controlled Acute Coronary Syndromes Trial

This example concerns a large phase 3 randomized trial of an active drug versus placebo in patients with acute
coronary syndromes undergoing percutaneous coronary angioplasty (see Mehta et. al. [14] for details). The
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primary endpoint is a composite of death, myocardial infarction and ischemia-driven revascularisation within
48 hours of randomisation. We assume on the basis of prior knowledge that the event rate for the placebo arm
is 8.7%. The investigational drug is expected to reduce the event rate by at least 20%. The investigators are
planning to randomize a total of 8000 subjects in equal proportions to the two arms of the study. It is easy to
show that a conventional fixed sample design enrolling a total of 8000 subjects will have 83% power to detect a
20% risk reduction with a one-sided level-0.025 test of significance. The actual risk reduction is expected to be
larger, but could also be as low as 15%, a treatment effect that would still be of clinical interest given the
severity and importance of the outcomes. In addition, there is some uncertainty about the magnitude of the
placebo event rate. For these reasons the investigators wish to build into the trial design some flexibility for
adjusting the sample size. Two options under consideration are, a group sequential design with the possibility
of early stopping in case the risk reduction is large, and an adaptive design with the possibility of increasing
the sample size in case the risk reduction is small. In the remainder of this section we shall discuss these two
options and show how they may be combined into a single design that captures the benefits of both.

Group Sequential Design
We first transform the fixed sample design into an 8000 person group sequential design with two interim looks,
one after 4000 subjects are enrolled (50% of total information) and the second after 5600 subjects are enrolled
(70% of total information). Early stopping efficacy boundaries are derived from the Lan and DeMets [15]
O’Brien-Fleming type error spending function. Let us denote this group sequential design as GSD1. The
operating characteristics of GSD1 are displayed in Table VI. The first column of Table VI is a list of potential
risk reductions, defined as 100 × (1 − ρ)% where ρ = πt/πc, πt is the event rate for the treatment arm, and πc is
the event rate for the control arm. The remaining columns display early stopping probabilities, power and
expected sample size. Since the endpoint is observed within 48 hours, the problem of overruns that we
encountered in the schizophrenia trial is negligible and may be ignored.

Table VI. Operating Characteristics of GSD1, a Three-Look 8000-Person Group Sequential Design

Risk Probability of Crossing Efficacy Boundary Expected
Reduction At Look 1 At Look 2 At Final Look Overall Sample

100 × (1 − ρ) (N = 4000) (N = 5600) (N = 8000) Power Size
15% 0.074 0.183 0.309 57% 7264
17% 0.109 0.235 0.335 68% 7002
20% 0.181 0.310 0.330 82% 6535
23% 0.279 0.362 0.275 92% 6017
25% 0.357 0.376 0.222 96% 5671

Table VI shows that GSD1 is well powered, with large savings of expected sample size for risk reductions of
20% or more. It is thus a satisfactory design if, as is initially believed, the magnitude of the risk reduction is in
the range 20% to 25%. This design does not, however, offer as good protection against a false negative
conclusion for smaller risk reductions. In particular, even though 15% is still a clinically meaningful risk
reduction, GSD1offers only 57% power to detect this treatment effect.

One possibility then is to increase the up-front sample size commitment of the group sequential design so that
it has 80% power if the risk reduction is 15%. This leads to GSD2, a three-look group sequential design with a
maximum sample size commitment of 13,853 subjects, one interim look after 6926 subjects (50% of total
information) and a second interim look after 9697 subjects (70% of total information). GSD2 has 80% power to
detect a risk reduction of 15% with a one-sided level-0.025 test. Table VII displays operating characteristics of
GSD2 for risk reductions between 15%, and 25%. Notice that by attempting to provide adequate power at 15%
risk reduction, the low end of clinically meaningful treatment effects, we have significantly over-powered the
trial for values of risk reduction in the expected range, 20% to 25% . This need not be a cause for concern,
however, because the trial stops early with high probability for risk reductions in the 20% to 25% range,
resulting in much smaller expected sample sizes. Thus if the sponsor is in a position to commit nearly 14,000
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Table VII. Operating Characteristics of GSD2, a Three-Look 13,853-Person Grp Sequential Design

Risk Probability of Crossing Efficacy Boundary Expected
Reduction At Look 1 At Look 2 At Final Look Overall Sample

100 × (1 − ρ) (N = 6926) (N = 9697) (N = 13, 853) Power Size
15% 0.167 0. 298 0.335 80% 11,456
17% 0.246 0.349 0.296 89% 10,699
20% 0.395 0.375 0.196 97% 9558
23% 0.565 0.329 0.099 99.3% 8574
25% 0.675 0.269 0.054 99.8% 8061

subjects at the very begining of the trial, GSD2 would be a very satisfactory design. In this case, however, the
sponsor was unable to find investors who would risk such a large sample size commitment up-front. But it was
possible to to obtain funding for GSD1 with a commitment to invest further, conditional on promising interim
results. This is a situation faced by many small pharmaceutical and biotechnology companies who are unable to
design a trial for the smallest clinically meaningful treatment effect up front, but can find the resources
provided the investment is made conditionally, with a smaller up-front investment followed by an additional
investment conditional on the interim results being promising.

Adaptive Group Sequential Design
We convert the three-look group sequential design GSD1 into an adaptive group sequential design by inserting
into it the option to increase the sample size at look 2, when 5600 subjects have been enrolled. Denote the
modified design by A-GSD1. The rules governing the sample size increase for A-GSD1 are similar to the rules
specified in Section 4.1 for the schizophrenia trial, but tailored to the needs of the current trial. The idea is to
identify unfavorable, promising and favorable zones for the interim results at look 2, based on the attained
conditional power. The sample size should only be increased if the interim results fall in the promising zone.
Subject to an upper limit, the sample size should be increased by just the right amount to boost the current
conditional power to some desired level (say 80%). The following are the design specifications for A-GSD1:

1. The starting design is GSD1 with a sample size of 8000 subjects, one interim look after enrolling 4000
subjects and a second interim look after enrolling 5600 subjects. The efficacy stopping boundaries at
these two interim looks are derived from the Lan and DeMets [15] error spending function of the
O’Brien-Fleming type

2. At the second interim analysis, with data available on 5600 subjects, the conditional power is computed
using the estimated value ρ̂ as though it were the true relative risk ρ. If the conditional power is no
greater than 33% the outcome is deemed to be unfavorable. If the conditional power is between 33% and
80%, the outcome is deemed to be promising. If the conditional power is at least 80%, the outcome is
deemed to be favorable

3. If the interim outcome is promising, the sample size is re-computed so as to achieve 80% conditional
power at the estimated value ρ̂. The original sample size is then updated to the re-computed sample size,
subject to the constraint in item 4 shown below

4. If the re-computed sample size is less than 8000, the original sample size of 8000 subjects is used. If the
re-computed sample size exceeds 16,000, the sample size is curtailed at 16,000 subjects

Some features of this adaptive strategy are worth pointing out. First, we selected a cut-off of 33% for the start
of the promising zone because it satisfies the condition for CPmin discussed in Section 3.2. Thus we may use the
conventional Wald statistic Z∗

2 for testing the null hypothesis at the final analysis even if the sample size is
increased. The simulation results for A-GSD1 are all based on using Z∗

2 for the final analysis. Second, the
sample size is re-computed on the basis of data from 5600 subjects from the trial itself. Therefore the estimate
of ρ available at the interim analysis is substantially more reliable than the estimate that was used at the start
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of the trial to compute an initial sample size of 8000 subjects. The latter estimate is typically derived from
smaller pilot studies or from other phase 3 studies in which the patient population might not be exactly the
same as that of the current trial. Finally, a sample size increase is only requested if the interim results are
promising, in which case the trial sponsor should be willing to invest the additional resources needed to power
the trial adequately. In contrast GSD2 increases the sample size substantially at the very begining of the trial,
before any data are available to determine if the large sample size is justified.

Operating Characteristics of Adaptive Group Sequential Design
Table VIII displays the power and expected sample size of the adaptive group sequential design A-GSD1. For
comparative purposes corresponding power and sample size values of GSD1 are also provided. If there is a 15%

Table VIII. Operating Characteristics of GSD1 (Group Sequential) and A-GSD1 (Adaptive Group
Sequential) Designs

Risk Reduction GSD1 (Group Sequential) A-GSD1 (Adaptive Group Sequential)
100 × (1 − ρ) Power Expected Sample Size Power Expected Sample Size

15% 57% 7264 62% 8288
17% 68% 7002 72% 7957
20% 82% 6535 86% 7313
23% 92% 6017 93% 6580
25% 96% 5671 97% 6052

All results for A-GSD1 are based on 100,000 simulated trials

risk reduction, A-GSD1 has 6% more power than GSD1 but utilizes an additional 1093 subjects on average. It
is seen that as the risk reduction parameter increases the power advantage and additional sample size
requirement of A-GSD1 are reduced relative to GSD1.

The power and sample size entries in Table VIII were computed unconditionally, and for that reason do not
reveal the real benefit that design A-GSD1 offers compared to design GSD1. As discussed previously in the
schizophrenia example, the real benefit of an adaptive design is the opportunity it provides to invest in the trial
in stages with the second stage investment forthcoming only if promising results are obtained at the first stage.
Accordingly Table IX displays the operating characteristics of both GSD1 and A-GSD1 conditional on the zone
into which the conditional power falls at the second interim analysis. The table reveals substantial gains in
power for A-GSD1 compared to GSD1 at all values of risk reduction if the second interim outcome falls in the
promising zone, thereby leading to an increase in the sample size. Outside this zone the two designs have the
same operating characterisics since the sample size does not change. If the second interim outcome falls in the
unfavorable zone, the trial appears to be headed for failure and an additional sample size investment would be
risky. If the second interim outcome falls in the favorable zone, the trial is headed for success without the need
to increase the sample size. Thus the adaptive design provides the opportunity to increase the sample size only
when the results of the second interim analysis fall in the promising zone. This is precisely when the trial can
most benefit from a sample size increase.

Adding a Futility Boundary One concern with design A-GSD1 is that it lacks a futility boundary. There is
thus the risk of proceeding to the end, possibly with a sample size increase, when the magnitude of the risk
reduction is small and unlikely to result in a successful trial. In particular, suppose that the null hypothesis is
true. In that case we can show by simulation that the power (i.e., the type-1 error) is 2.3% and the expected
sample size under A-GSD1 is 8234 subjects. It might thus be desirable to include some type of futility stopping
rule for the trial. In this trial the investigators proposed the following futility stopping rules at the two interim
analysis time points:

1. Stop for futility at the first interim analysis (N = 4000) if the estimated event rate for the experimental
arm is at least 1% higher than the estimated event rate for the control arm
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Table IX. Operating Characteristics of GSD1 (Group Sequential) and A-GSD1 (Adaptive Group
Sequential) Designs Conditional on Second Interim Outcome

Risk Second Probability Power Conditional on Expected
Reduction Interim of Second Interim Outcome Sample Size

100 × (1 − ρ) Outcome Interim Outcome GSD1 A-GSD1 GSD1 A-GSD1
Unfavorable 37% 16% 16% 8000 8000

15% Promising 23% 57% 81% 8000 12445
Favorable 40% 94% 94% 6152 6161

Unfavorable 29% 21% 21% 8000 8000
17% Promising 22 % 64% 87% 8000 12326

Favorable 49 % 96% 96% 5992 6000
Unfavorable 17% 31% 31% 8000 8000

20% Promising 19% 73% 93% 8000 12164
Favorable 64% 98% 98 % 5721 5727

Unfavorable 9% 42% 42% 8000 8000
23% Promising 14% 81% 96% 8000 12008

Favorable 77% 99% 99% 5440 5449
Unfavorable 5% 49% 49% 8000 8000

25% Promising 10% 85% 98% 8000 11875
Favorable 85% 99.5% 99.5% 5250 5247

All results are based on 100,000 simulated trials

2. Stop for futility at the second interim analysis (N = 5600) if the conditional power, based on the
estimated risk ratio ρ̂, is no greater than 20%

The impact of the futility boundary on the unconditional operating characteristics of the A-GSD1 design are
displayed in Table X. The inclusion of the futility boundary has resulted in a dramatic saving of nearly 3000
subjects, on average, at the null hypothesis of no risk reduction. Furthermore, notwithstanding a small power
loss of 2-4%, the trial continues to have well over 80% power for risk reductions of 20% or more. The trial
suffers a power loss of 4% if the magnitude of the risk reduction is 15%, the low end of the range of clinical
interest. In this situation, however, the unconditional power is inadequate (only 62%) even without a futility
boundary. To fully appreciate the impact of the futility boundary on power and expected sample size, it is

Table X. Operating Characteristics of the A-GSD1 Design with and without a Futility Boundary

Risk Reduction A-GSD1 with No Futility Boundary A-GSD1 with Futility Boundary
100 × (1 − ρ) Power Expected Sample Size Power Expected Sample Size

0% 2.3% 8242 2.1% 5346
15% 62% 8288 58% 7482
20% 86% 7313 82% 6983
25% 97% 6052 95% 5959

All results are based on 100,000 simulated trials

necessary to study the operating characteristics of the trial conditional on the results of the second interim
analysis. These results are displayed in Table XI. It is seen that the presence of the futility boundary does not
cause any loss of power for trials that enter the promising or favorable zones at the second interim analysis.
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Table XI. Operating Characteristics of A-GSD1 Design with and without a Futility Boundary,
Conditional on the Second Interim Outcome

Risk Second Probability Power Conditional on Expected
Reduction Interim of Second Interim Outcome Sample Size

100 × (1 − ρ) Outcome Interim Outcome No Fut With Fut No Fut With Fut
Unfavorable 93% 0.5% 0.2% 8000 4874

0% Promising 6% 13% 14% 13225 13115
Favorable 2% 61% 65% 6976 6913

Unfavorable 37% 16% 6% 8000 5805
15% Promising 23 % 81% 81% 12445 12286

Favorable 40 % 94% 95% 6161 6103
Unfavorable 17% 31% 13% 8000 6037

20% Promising 19% 93% 93% 12164 11976
Favorable 64% 98% 98% 5727 5698

Unfavorable 5% 49% 21% 8000 6257
25% Promising 10% 98% 97% 11875 11850

Favorable 85% 99.5% 99.5% 5247 5224
All results are based on 100,000 simulated trials

Additionally the presence of the futility boundary causes the average sample size to be reduced substantially in
the unfavorable zone while remaining the same in the other two zones. In effect the futility boundary
terminates a proportion of trials that enter the unfavorable zone thereby preventing them from proceeding to
conclusion. It has no impact on trials that enter the promising or favorable zones.

5. Regulatory and Operational Issues

The statistical methodology that permits sample size re-estimation based on an interim estimate of the
treatment effect has been available for about ten years and has gradually made its way into actual confirmatory
clinical trials. Both examples discussed in the current paper are based on real trials whose designs were
accepted by the FDA, and subsequently activated. The recently released FDA Guidance for Industry on
Adaptive Design [16] is an indispensible document for sponsors who are considering the adaptive route for their
confirmatory trials. It classifies adaptive approaches into those that are generally well-understood and those
that are less well understood. Group sequential designs and blinded sample size re-estimation fall into the
category of well-understood methods while sample size re-estimation using unblinded estimates of the
treatment effect falls into the category of less well understood methods. This is not to suggest that the latter
methods are disallowed. Rather, the guidance document says that these methods should be used when other
better understood methods are unable to meet the primary study objectives. In our context this implies that
one should be able to provide a valid reason for including the option for unblinded sample size re-estimation at
an interim look in preference to using a conventional design that fixes the maximum sample size at the outset.
The usual reason is that even after a thorough review of all relevant prior data there is still some uncertainty
regarding the true treatment effect and population variability. Sometimes a group sequential design powered to
detect a small but clinically meaningful treatment effect will resolve this difficulty. We have seen, however, that
over-runs, large up-front commitments, and conservative boundaries for early efficacy stopping are deterrents to
the group sequential approach.

The reason for the FDA’s classification of of unblinded sample size re-estimation into the “less well
understood” category has nothing to do with the statistics. The validity of the statistical methodology is
accepted. The FDA’s real concern is the possibility of operational bias. Operational bias might be introduced
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into the study if the interim results were somehow revealed to the investigators and led to selective withdrawal
of patients from the study before they had completed their full course of treatment. The only way to prevent
this type of operational bias is by creating good operating procedures that are built into an interim analysis
charter and are strictly followed. Such procedures are already in place for group sequential designs, and can be
modified for the specifics of the adaptive setting. To this end it is customary to set up an independent
statistical center (ISC) for creating the interim analysis report and an independent interim analysis review
committee (IARC) whose task it is to review the interim analysis report and implement the sample size
re-assessment in accordance with the interim analysis charter. If the study already has a functioning data
monitoring committee (DMC), that committee or a subset of that committee could fulfill the role of the IARC.
The IARC charter would however differ from that of a traditional DMC. This charter should describe how the
interim data are to be transferred to the ISC, what the interim analysis report should contain, who may have
access to that report, the precise rules for altering the sample size, and the procedure to be followed in making
the sample size recommendation to the sponsor. Access to the charter must be restricted to the ISC, the IARC,
and only those employees of the sponsor organization who were involved in the trial design. Everyone with
access to the charter should be required to sign a confidentiality agreement in order that the precise rules
governing sample size re-estimation may not be disclosed to the outside community. It should be recognized
that, as in good data monitoring practice, any statistical adaptive algorithm should be seen as guideline to aid
decision-making rather than as a definitive rule. Other criteria, such as secondary endpoints, safety issues,
feasible recruitment rates and budgetery limits, can impact on both independent recommendations by IARC
and decisions by sponsors. It is sensible to mention such judgemental issues in the Charter, so that necessary
flexibility is not perceived as “breaking the rules”.

Even with good operating procedures in place to prevent premature disclosure of interim results, the mere fact
that a sample size increase was implemented cannot be hidden from the sites enrolling subjects. Concerns have
been raised that this knowledge alone could modify investigator behavior. It is difficult, however, to anticipate
how investigators would interpret this knowledge. Some might feel that the chances of the trial succeeding have
improved while others might take it as a sign that the initial estimate of treatment effect was too optimistic. A
discussion about the rationale for the adaptive design, its potential for reducing the risk of running an
underpowered study, and the need to maintain the same pattern of patient enrollment throughout the study
might be an important agenda item at an investigator meeting. It would likewise be important to educate the
Institutional Review Boards about the adaptive nature of the design, stressing that while the actual sample
size is not known at the outset, the maximum sample size if an adaptation takes place has been fixed. In this
sense the uncertainty about the sample size of an adaptive design is similar to the uncertainty about the
sample size of a group sequential design or of any event driven trial in which the number of events but not the
sample size is known in advance.

Additional discussion concerning these operational issues is provided in a White Paper published by the
PhRMA Adaptive Working Group [17]. The FDA has adopted a “wait-and-see” attitude in order to gain more
experience with the risks and benefits of unblinded sample size re-estimation. However, a well prepared
submission that addresses both the statistical and operational issues and backs them up with simulations and a
detailed charter stands an excellent chance of regulatory acceptance.

6. Concluding Remarks

While there has been increasing enthusiasm for adaptive designs amongst methodologists, those with a
specialist understanding, and some trial sponsors, delivered applications in major phase 3 trials have been
relatively few to date. This is partly because investigators and sponsors who do not have any in-depth
knowledge of adaptive designs, and do not fully understand what value they add to conventional designs, are
wary of getting involved in their statistical and organizational complexities. We have demonstrated through
case studies that unblinded sample size re-estimation is a valuable design option, to be used alongside other
more established fixed sample and group sequential design options. In addition we have identified those
promising circumstances under which one may increase the sample size and still perform a conventional final
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analysis without resorting to adjustments or weightings that would be a mystery to most trialists.

In the early years following publication of methods for unblinded sample size re-estimation, concerns were
raised about their efficiency relative to conventional group sequential methods. These concerns arose because in
these publications preservation of the type-1 error was achieved by use of a weighted statistic like (4) with
pre-specified weights. This violates the sufficiency principle. Tsiatis and Mehta [18] demonstrated that for any
adaptive design with sample size modification requiring the use of the weighted statistic (4) one could construct
a group sequential design utilizing the usual sufficient statistic that would stop earlier with higher probability
of rejecting the null hypothesis if δ > 0 and also stop earlier with higher probability of accepting the null
hypothesis if δ < 0. Jennison and Turnbull [19] demonstrated a similar result empirically by creating a group
sequential design with the same power function as an adaptive design and then demonstrating by simulation
that it would have a smaller expected sample size. These results are of great theoretical interest but of limited
practical value for sponsors of industry trials. They produce appreciable efficiency gains only if there are no
over-runs, a large number of interim analyses, a large up-front sample size commitment and aggressive
early-stopping boundaries. Sponsors are usually unwilling or unable to impose these conditions on their trial
designs. Furthermore, the analyses of Tsiatis and Mehta [18] and Jennison and Turnbull [19] do not capture the
essential appeal of the adaptive approach which is to invest limited resources initially and to invest more only
after seeing interim results that are promising. Most adaptive designs have only two stages, increase the sample
by at most a factor of two, and that too, only if the results fall in a promising zone. It has yet to be
demonstrated that there is any appreciable loss of efficiency due to the use of the weighted statistic in these
settings.

It has been argued [11] that using conditional power assuming δ̂1 is the truth, for purposes of sample size
re-estimation, has its limitations given the lack of precision of the estimate. The point, however, is not to
estimate δ with precision but rather to identify if the interim results are promising. The conditional power
estimate is one way of accomplishing this. One can, if preferred, represent the promising zone in terms of z1, δ̂1
or CPδ(z1, ñ2) since these statistics are all transformations of CPδ̂1

(z1, ñ2). For example, the X-axis of Figure 1
reveals that a conditional power of 36% (the start of the promising zone for the schizophrenia trial)
corresponds to an estimate δ̂1 that is about 50% of the δ1 for which the trial was powered. Ultimately the
effectiveness of the promising zone must be judged in terms of its impact on the operating characteristics of the
design. The case studies have shown that this approach works well in practice.

An important issue that has not been discussed at all is how to provide a valid point estimate and confidence
interval for the combined data in which an adaptive sample size change was made. This is a more difficult
problem and research is still on-going. We refer the reader to articles by Mehta, Bauer, Posch and
Brannath [20], and Brannath, Mehta and Posch [21] for recent results.

In conclusion, while we would like to see adaptive sample size re-estimation play a larger role in major phase 3
trials, each case requires careful attention to both organizational and statistical issues. An adaptive design
might not always be the right choice. The more established fixed sample and group sequential designs should
always be evaluated alongside an adaptive design. Simulations play a crucial role in understanding the
operating characteristics of an adaptive design and deciding whether it is an appropriate choice for the trial
under consideration. There should be a tangible, quantifiable benefit arising from the decision to take the
adaptive route.
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