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A group sequential Holm procedure with
multiple primary endpoints
Yining Ye,a*† Ai Li,b Lingyun Liuc and Bin Yaob

We propose a group sequential Holm procedure when there are multiple primary endpoints. This method
addresses multiplicities arising from multiple primary endpoints and from multiple analyses in a group
sequential design. It has been shown to be a closed testing procedure and preserves the familywise error rate
in the strong sense. When multiple endpoints are the only concern without an interim analysis, the method
simplifies to the weighted Holm procedure. The proposed method is more powerful than the parallel group
sequential method and avoids the need to anticipate the testing order as in the fixed sequence testing scheme.
Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: multiplicity adjustment; multiple endpoints; group sequential designs; Holm procedure; familywise
type I error rate

1. Introduction

Clinical trials are commonly designed with one primary endpoint and multiple secondary or exploratory
endpoints. In some clinical settings, multiple primary endpoints are of interest, and inferences are made
within the context of group sequential designs.

For inferences on multiple endpoints without a group sequential design, authors widely used the
closed testing principle and Bonferroni-based methods. For n endpoints with the corresponding n

hypotheses, H 1
0 ; : : : ;H

n
0 , the closed testing principle [1] allows the rejection of any one of the elemen-

tary hypotheses, for example, H i
0, if all possible intersection hypotheses involving H i

0 can be rejected
by using valid local level ˛ tests. It strongly controls the familywise error rate (FWER) for all the n
hypotheses at level ˛. The Bonferroni procedure compares each raw p-value to a critical value of ˛

n
in

order to maintain the FWER at level ˛ [2]. Authors have proposed adaptations of the Bonferroni methods
[3, 4] to increase power. When some endpoints are deemed more important than others, one may con-
sider the weighted Bonferroni procedure or its extension, the weighted Holm procedure [3]. When the
endpoints can be ordered hierarchically, authors often apply gatekeeping procedures [5–8]. Wiens [9,10]
introduced the fallback procedure to evaluate a family of hypotheses in a fixed sequence setting.

Group sequential trials have the flexibility to stop early because of overwhelming evidence of efficacy,
harm, or futility. They provide important safeguards to ensure that subjects are not unnecessarily exposed
to harmful or ineffective therapies. Such designs offer additional incentives to researchers because of the
potential savings on subjects, resources, and time. The characteristics and benefits of group sequential
trials are well understood when a single primary endpoint is involved [11–14].

More recent research extended inferences in group sequential trials to multiple endpoints. Tang and
Geller [15] proposed applying the closed testing principle using a global test procedure for handling mul-
tiple primary endpoints. Glimm et al. [16] and Tamhane et al. [17] considered group sequential designs
where a single primary endpoint and a secondary endpoint were tested in a hierarchical order.

In this paper, we consider multiple primary endpoints in the context of group sequential designs where
the objective is to seek regulatory approvals on at least one of the primary endpoints. This is to be
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distinguished from trials in some disease settings where the objective is to succeed in all primary end-
points in order to satisfy the regulatory requirements [18]. We have also broadened the definition of
multiple endpoints in this paper to include multiple hypotheses of the same endpoint associated with
different populations. When multiple primary endpoints are involved in a group sequential design, it is
possible to draw conclusions on some primary endpoints at the interim analysis, but the trial needs to
continue in order to evaluate other primary endpoints. In this situation, the benefits to address critical
questions related to other primary endpoints outweigh the immediate savings in resources as seen in the
examples we will discuss. We compare planned and average sample sizes of the proposed approaches
with traditional designs.

We present two examples in drug development settings that have motivated our interest and research in
such designs. In oncology, overall survival (OS) is considered the gold standard endpoint by regulatory
authorities for approval. However, endpoints such as progression-free survival (PFS) are also acceptable
for approval depending on the disease setting and regulatory authority. A common approach is to have
PFS as the primary endpoint followed by OS as the secondary endpoint where the study is designed to
have adequate power for both endpoints. Such a strategy is not without risks. For example, a recently
approved oncology product [19] had demonstrated OS benefits but did not demonstrate PFS benefits.
Depending on the situations, it may be desirable to conduct a global oncology trial with both OS and
PFS as primary endpoints [20] so testing of OS does not depend on the outcome of PFS. In practice,
the PFS endpoint is expected to be realized earlier than the OS endpoint, and one does not stop the trial
when significant benefit is shown only on PFS. The second example is in developing treatment with
potential predictive biomarkers. There may be a priori belief that there is treatment effect in a biomarker
subpopulation, but it is uncertain whether there is treatment effect in the broader population. One may
design a trial to investigate as primary objectives the treatment effects in both the overall population
and the biomarker subpopulation [21,22]. To fully characterize whether the biomarker is predictive, it is
critical to assess the treatment effect not just in the biomarker subpopulation.

The goal of this paper is to propose methods that strongly control the FWER among multiple primary
endpoints or hypotheses in a group sequential setting. The proposed group sequential Holm procedures
do not require prespecification of the testing sequence among multiple primary endpoints and offer flex-
ibility to reallocate ˛ once a hypothesis is rejected. Section 2 describes the method. We demonstrate the
connection to the weighted Holm procedure. Section 3 extends the method to more than two primary
endpoints. In Section 4, we apply the proposed methods to an actual clinical trial with two primary
objectives. Simulation results with regard to power and average sample sizes follow in Section 5. We
provide additional remarks and discussion in Section 6.

2. Methodology

Consider a clinical trial in which there are two primary endpoints denoted by A and B. The intent of
the trial is to assess the treatment effect on either A or B or both. Suppose that J interim analyses
including the final analysis are planned. Let Xj .Yj / be the Wald statistics for testing endpoint A (B)
based on cumulative data up to look j.j D 1; : : : ; J /. Let HA.HB/ denote the null hypothesis of no
treatment effect on the endpoint A (B). Let wA and wB be the prespecified weights with wA CwB D 1.
Let ˛A D wA˛ and ˛B D wB˛ be the significance levels initially allocated to endpoints A and B. Let cj
and c0j be the group sequential boundaries for endpoint A derived from some prespecified error spending
approach at significance level ˛A and ˛, respectively, such that cj > c0j .j D 1; : : : ; J / . Let dj and d 0j
be the corresponding boundaries for endpoint B at significance level ˛B and ˛, respectively, such that
dj > d 0j .j D 1; : : : ; J / . The boundaries satisfy the following equations:

P
�
[JjD1fXj > cj g

�
D ˛A

P
�
[JjD1

˚
Xj > c

0
j

��
D ˛

P
�
[JjD1fYj > dj g

�
D ˛B

P
�
[JjD1

˚
Yj > d

0
j

��
D ˛

Consider the following group sequential design: monitor endpoint A using level ˛A group sequential
boundary cj and endpoint B using level ˛B group sequential boundary dj . If either of the two endpoints
crossed its corresponding boundary cj or dj , then the other endpoint can be tested using the full level ˛
boundary. For example, if endpoint A crossed its level ˛A boundary cj� at some look j �, then efficacy
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with respect to endpoint A can be claimed and its type I error ˛A can be reallocated to endpoint B so
that endpoint B can be tested using full level ˛ boundary d 0j where j > j �. Similarly, if endpoint B
crossed its level ˛B boundary dj�� at some look j ��, then efficacy with respect to endpoint B can be
claimed and its type I error ˛B can be reallocated to endpoint A so that A can be tested using full level ˛
boundary c0j where j > j ��.

This type I error reallocation idea is similar to the ˛ propagation idea [23]. The group sequential
procedure strongly controls the type I error rate at level ˛ because it is a closed test. To see this, consider
the closed family fHA \HB;HA;HBg. The closed principle [1] states that the FWER will be strongly
controlled if the following two requirements are met: (1) a local level ˛ test is prespecified for each
intersection hypothesis in the closed family, and (2) each individual hypothesis is rejected only if all
the intersection hypotheses containing such particular individual hypothesis are rejected at their local ˛
tests. For example, HA is rejected only if both HA \HB and HA are rejected at local level ˛ tests. For
the proposed method, an ˛ level global test for HA \HB is as follows: reject HA \HB if endpoint A
crosses its level ˛A group sequential boundary cj .j D 1; : : :J / at any look or endpoint B crosses the
level ˛B group sequential boundary dj .j D 1; : : :J / at any look. To see that this is a level ˛ test for the
intersection hypothesis HA \HB, note

P .rejectHA \HB/D P
�
[JjD1

˚
Xj > cj

�
OR[JjD1 fYj > dj g

�
6 P

�
[JjD1fXj > cj g

�
CP

�
[JjD1fYj > dj g

�
D ˛AC ˛B D ˛

The boundaries c01; c
0
2 : : : ; c

0
J and d 01; d

0
2; : : : d

0
J serve as local level ˛ tests for HA and HB, respectively.

We can illustrate this closed test by the following diagram:

The restriction on the boundaries
�
cj > c0j and dj > d 0j ; j D 1; : : : ; J

�
ensures that the closed test

has a desirable property of being consonant [24]. This consonant property implies that if the intersec-
tion hypothesis HA \HB is rejected, then at least one of the individual hypotheses HA and HB will be
rejected by the closed test.

With regard to the boundary values for each endpoint, we can use different methods. For example,
we can use O’Brien–Fleming boundaries for endpoint A and Pocock boundaries for endpoint B. After
one hypothesis is rejected, one may continue using the predefined interim boundaries with c0j D cj or
d 0j D dj for j < J . In other words, the boundaries can be left unchanged at the interim analyses except
at the final analysis J . Alternatively, c0j or d 0j may be updated with completely different values after the
˛ reallocation. We term the former group sequential Holm fixed (GSHf) and the latter group sequential
Holm variable (GSHv). We will compare both methods with the naïve approach where ˛ is split between
the two endpoints each with independent group sequential procedures and no ˛ reallocation. For ease of
reference, we label the naïve approach as group sequential Bonferroni (GSB).

We can calculate the critical boundaries by using the Lan-DeMets error spending function [13]. Con-
sider a simple situation, where one interim analysis and one final analysis are planned (J D 2). Let
˛.t/, ˛A.t/, and ˛B.t/ be the nondecreasing function defined over t 2 Œ0; 1�, such that ˛.0/ D 0,
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˛A.0/ D 0; ˛B.0/ D 0; ˛A.1/ D ˛A, ˛B.1/ D ˛B, and ˛.1/ D ˛. Let t1A be the information frac-
tion for endpoint A at the interim analysis; t1B be the information fraction for endpoint B at the interim
analysis. Let t2A D t2B D 1 be the information fraction at the final analysis for endpoints A and B. We
can calculate boundary values for endpoint A, c1, c01; c2, and c02, from the following two equations under
the null hypotheses:

P.X1 > c1/D ˛A.t1A/

P
�
X1 > c

0
1

�
D ˛.t1A/

P.X1 > c1/C P .X1 6 c1; X2 > c2/D ˛A.t2A/D ˛A

P
�
X1 > c

0
1

�
C P

�
X1 6 c01; X2 > c02

�
D ˛.t2A/D ˛

If the O’Brien–Fleming boundary is desired, then an error spending function that approximates the
O’Brien–Fleming boundary is given by [13]:

˛AOF .t1A/D 2ˆ

�
�

Z˛A=2p
t1A

�
(1)

where ˆ.:/ is the standard normal cdf and Z˛A=2 is the
�
1� ˛A

2

�
quantile of the standard normal

distribution. Similarly, the error spending function that approximates the Pocock boundary is given by

˛APO .t1A/D ˛Alnf1C .e � 1/t1Ag (2)

When c01 D c1, that is, the GSHf procedure is preferred, we can calculate the critical boundaries c1, c2,
c02 from the following equations under the null hypotheses:

P.X1 > c1/D ˛A.t1A/

P.X1 > c1/CP .X1 6 c1; X2 > c2/D ˛A.t2A/D ˛A

P.X1 > c1/CP
�
X1 6 c1; X2 > c02

�
D ˛.t2A/D ˛

For both the GSHv and GSHf procedures, similar calculations as mentioned previously can be performed
to obtain boundaries d1, d 01; d2, and d 02.

The proposed group sequential Holm methods simplify to the weighted Holm procedure [3] when
only the final analysis is planned .J D 1/. To see the connection, we can re-arrange the notation so that
the boundary cJ corresponds to ˛A D w1˛ and dJ corresponds to ˛B D w2˛, where w1 C w2 D 1.
The boundaries c0J and d 0J correspond to significance level ˛. We further let p�1 D

p1
w1

, p�2 D
p2
w2

be the
weighted p-values, where p1 and p2 are the raw p-values for HA and HB, respectively. For simplicity
and without loss of generality, we assume p�1 6 p�2 . In the weighted Holm procedure, p�1 is compared

with ˛. Note that ˛ D 1
w1Cw2

˛. If p�1 < ˛, then p�2 is compared with 1
w2
˛. In our proposed method, p1

is compared with w1˛. If p1 < w1˛, then p2 is compared with ˛ after the type I error reallocation. The
two procedures are equivalent because p�1 < ˛ is equivalent to p1 < w1˛ and p�2 <

1
w2
˛ is equivalent

to p2 < ˛. When p�1 > ˛, the weighted Holm procedure stops and will accept HB. In the proposed
method, despite p1 > w1˛, one can, in theory, continue testingHB by comparing p2 with w2˛. Because
p2
w2
> p1
w1
> ˛, it is easily seen that p2 > w2˛, leading to acceptance of HB as well.

3. Extension

We can extend the proposed method to the situation with more than two primary endpoints. Con-
sider a clinical trial with K endpoints of interest. Denote the K hypotheses associated with the K
endpoints by H1;H2; : : : ;HK . Let F .0/ D f1; 2; : : : ; Kg be the index set for all the endpoints. Let
w
.0/
1 ; w

.0/
2 ; : : : ; w

.0/
K be the prespecified weights associated with these hypotheses such that w.0/1 C
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w
.0/
2 C : : : C w

.0/
K D 1. Let ˛.0/

k
D w

.0/

k
˛.k D 1; : : : ; K/ be the type I error allocated to Hk .

Let Zk1; Zk2; : : : ZkJ be the Wald statistics to test Hk.k D 1; 2; : : : ; K/ at each interim look. Let

c
.0/

k1
; c
.0/

k2
; : : : ; c

.0/

kJ
be the group sequential boundary for Hk.k D 1; 2; : : : ; K/ at significance level ˛.0/

k

such that

P
�
[JjD1fZkj > ckj g

�
D ˛

.0/

k
.k D 1; 2; : : : ; K/

Consider the following group sequential testing procedure.

Step 1. Test Hk.k D 1; 2; : : : ; K/ using the boundaries c.0/
k1
; c
.0/

k2
; : : : ; c

.0/

kJ
with level ˛.0/

k
. If

none of the K endpoints crossed its boundary at any of the J looks, then retain all Hk
.k D 1; 2; : : : ; K/ and stop testing. Otherwise, if any of the K endpoints crossed its boundary
at one of the J looks, then efficacy with respect to this endpoint can be claimed. Let j .1/ be
the earliest interim look where at least one endpoint can be rejected; k.1/ be the set of the m1
endpoints that crossed their boundaries at look j .1/; and F .1/ D F .0/nfk.1/g be the set for
the remaining K � m1 endpoints. Then, the significance level assigned to all the individual
hypotheses Hk

�
k 2 F .1/

�
will be updated as follows:

˛
.1/

k
D ˛

.0/

k
C

X
i2k.1/

˛
.0/
i �

w
.0/

k

1�
P
i2k.1/

w
.0/
i

D
w
.0/

k

1�
P
i2k.1/

w
.0/
i

˛;
�
k 2 F .1/

�

Let w.1/
k
�

w
.0/

k

1�
P

i2k.1/

w
.0/

i

. The updated significance level for the Hk
�
k 2 F .1/

�
is simply

˛
.1/

k
D w

.1/

k
˛. The boundaries for Hk

�
k 2 F .1/

�
at significance level ˛.1/

k
will be updated

using the error spending approach that satisfies the following equation:

P
�
[JjD1

n
Zkj > c

.1/

kj

o�
D ˛

.1/

k
;
�
k 2 F .1/

�

Step 2. Test Hk
�
k 2 F .1/

�
for any interim look j.j > j .1// using the updated boundary values

c
.1/

k1
; c
.1/

k2
; : : : ; c

.1/

kJ
. If none of the K �m1 endpoints crossed the updated boundary values at

any of the j > j .1/ interim looks, then retain allHk
�
k 2 F .1/

�
and stop testing. Otherwise, if

any of the K �m1 endpoints crossed its boundary, then efficacy with respect to this endpoint
can be claimed. Let k.2/ be the set for the m2 endpoints that crossed their boundaries at the
earliest interim look j .2/ after step 1, that is, j .2/ > j .1/. Let F .2/ D F .1/nfk.2/g. Then,
the significance level assigned to all the individual hypotheses Hk

�
k 2 F .2/

�
will be updated

as follows:

˛
.2/

k
D ˛

.1/

k
C

X
i2K.2/

˛
.1/
i �

w
.1/

k

1�
P
i2k.2/

w
.1/
i

D
w
.1/

k

1�
P
i2k.2/

w
.1/
i

˛;
�
k 2 F .2/

�

Let w.2/
k
�

w
.1/

k

1�
P

i2k.2/

w
.1/

i

. The updated significance level for the Hk
�
k 2 F .2/

�
is ˛.2/

k
D w

.2/

k
˛.

The boundaries for Hk
�
k 2 F .2/

�
at significance level ˛.2/

k
will be updated using the error spending

approach, which satisfies the following equation:

P
�
[JjD1

n
Zkj > c

.2/

kj

o�
D ˛

.2/

k

�
k 2 F .2/

�

Step i. Test Hk
�
k 2 F .i�1/

�
for any interim look j

�
j> j .i�1/

�
using the updated boundary values,

c
.i�1/

k1
; c
.i�1/

k2
; : : : ; c

.i�1/

kJ
. If none of the K � m1 � m2 � � � � � mi�1 endpoints crossed its

boundary, then retain all Hk
�
k 2 F .i�1/

�
and stop testing. Otherwise, if any of the K �m1 �

m2 � � � � � mi�1 endpoint crossed its boundary at some interim look j .i/
�
j .i/ > j .i�1/

�
,
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then efficacy with respect to this endpoint can be claimed. Let k.i/ be the set for the mi
endpoints that crossed their boundary at the earliest interim look j .i/, j .i/ > j .i�1/. Let
F .i/ D F .i�1/nfk.i/g. Then, the significance level assigned to all the individual hypotheses
Hk

�
k 2 F .i/

�
will be updated as follows:

˛
.i/

k
D ˛

.i�1/

k
C
X
i2k.i/

˛
.i�1/
i

w
.i�1/

k

1�
P
i2k.i/

w
.i�1/
i

D
w
.i�1/

k

1�
P
i2k.i/

w
.i�1/
i

˛;
�
k 2 F .i/

�

Let w.i/
k
D

w
.i�1/

k

1�
P

i2k.i/

w
.i�1/

i

. The updated significance level for the Hk
�
k 2 F .i/

�
is ˛.i/

k
D w

.i/

k
˛. The

boundaries forHk
�
k 2 F .i/

�
at significance level ˛.i/

k
will be updated using the error spending approach.

The updated set of boundaries satisfies the following equation:

P
�
[JjD1

n
Zkj > c

.i/

kj

o�
D ˛

.i/

k

�
k 2 F .i/

�

Continue the steps until all the endpoints are rejected or the final analysis is complete, whichever is
earlier. Note that after type I error reallocation, the boundaries for a particular endpoint are calcu-
lated such that the following monotonicity condition are satisfied c.i2/

kj
6 c

.i1/

kj
for i1 < i2 and all

j D 1; : : : J . Again, this monotonicity condition ensures the desired consonance property such that the
group sequential test procedure with multiple endpoints admits such stepwise shortcut. For example,

if c.i/
kj

is fixed at c.0/
kj

for j < J , then this is the GSHf method. Without the restrictions, it is the
GSHv method.

4. Example

We apply the group sequential Holm methods proposed in Section 2 to an actual clinical trial. The
MOtesanib Non-Small Cell Lung Cancer Efficacy and Tolerability (MONET1) study was a phase 3,
placebo-controlled randomized oncology clinical trial [22]. The primary objectives of this study were
to determine if motesanib in combination with chemotherapy would improve survival (1) in the overall
study population and (2) in subjects with adenocarcinoma histology (adenocarcinoma subpopulation).

The type I error was split between the overall population (1.5%, one sided) and the adenocarcinoma
subpopulation (1%, one sided). The study had 80% power requiring 742 deaths in the overall population
to detect a hazard ratio of 1.25 and 80% power requiring 593 deaths in the adenocarcinoma subpopu-
lation to detect a hazard ratio of 1.30. A total of 1060 subjects were enrolled including 70% with the
adenocarcinoma histology. An interim analysis was planned when 50% of the total deaths occurred in the
overall population. The number of deaths for patients with adenocarcinoma histology was also close to
the 50% target in the subpopulation at the interim analysis. A negligible amount of type I error (0.00005,
one sided) was assigned at the interim for each hypothesis in the original design.

To apply the GSHv method, we use the O’Brien–Fleming spending function as in Equation (1). The
critical boundaries can be obtained by solving the following equations:

P.X1 > c1/D ˛A.0:5/D 2ˆ

�
�

Z0:015
p
0:5

�

P
�
X1 > c

0

1

�
D ˛.0:5/D 2ˆ

�
�

Z0:025
p
0:5

�

P.X1 > c1/CP .X1 6 c1; X2 > c2/D ˛A.t2A/D ˛A D 0:015

P
�
X1 > c

0

1

�
CP

�
X1 6 c

0

1; X2 > c
0

2

�
D ˛.t2A/D ˛ D 0:025:

It can be shown that c1 D 3:25; c
0

1 D 2:96, c2 D 2:18, c
0

2 D 1:97. Note that X1 and X2 are the log-
rank statistics at interim and final analysis for the overall population. Similarly, d1 D 3:46; d

0

1 D 2:96,
d2 D 2:33, and d

0

2 D 1:97 in the adenocarcinoma subpopulation.
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Table I. Boundary values for the MONET1 trial.

Overall population (˛A D 0:015/ Adenocarcinoma subpopulation (˛B D 0:01/

Approacha Interim Final Interim Final

Original design 3.89 2.17 3.89 2.32
GSHv 3.25 (2.96b/ 2.18 (1.97b/ 3.46 (2.96b/ 2.33 (1.97b/

GSHf 3.25 2.18 (1.96b/ 3.46 2.33 (1.96b/

GSB 3.25 2.18 3.46 2.33
aSpending function approximating the O’Brien–Fleming boundary is used.
bNumbers in parentheses are the boundary values when ˛ is reallocated.
GSHv, group sequential Holm variable method; GSHf, group sequential Holm fixed method; GSB, group sequential
Bonferroni.

Figure 1. Rejection region at the interim analysis for MONET1. In MONET1 where ˛ is split between the overall
population and the adenocarcinoma subpopulation (0.015 and 0.01, one-sided respectively), one interim analysis
is planned to occur when information fraction reaches 50% for overall population. The Lan-DeMets ˛ spending
function that approximates O’Brien–Fleming is used. c1 D 3:25, d1 D 3:46; c0

1v
D 2:96, d 0

1v
D 2:96 for GSHv.

Similarly, if the GSHf is used with the same O’Brien–Fleming spending function, then critical
boundaries can be obtained by solving

P.X1 > c1/D ˛A.0:5/D 2ˆ

�
�

Z0:015
p
0:5

�

P.X1 > c1/CP .X1 6 c1; X2 > c2/D ˛A.t2A/D ˛A D 0:015

P.X1 > c1/CP
�
X1 6 c1; X2 > c

0

2

�
D ˛.t2A/D ˛ D 0:025:

It can be shown that c1 D 3:25, c2 D 2:18, and c
0

2 D 1:96 for the overall population. Similarly, we obtain
d1 D 3:46, d2 D 2:33, and d

0

2 D 1:96 in the adenocarcinoma subpopulation.
Table I summarizes the boundary values of the various methods. In addition, Figures 1 and 2 illustrate

the boundaries and the rejection regions of GSHf, GSHv, and GSB. As shown in Figures 1 and 2C,
the shaded areas representing rejection region for detecting significant effects for the overall population
or subpopulation are identical for all methods. However, the rejection regions for detecting significant
effects in both the overall and subpopulation are different, with the GSHf procedure having the largest
area at the final analysis (Figure 2A–C) and the GSHv procedure having the largest area at the interim
analysis (Figure 1).

The trial did not stop at the interim analysis. At the final analysis, the trial failed to demonstrate sur-
vival benefits of motesanib in either the overall population or the adenocarcinoma subpopulation [22].

5. Simulation

To evaluate the performance of the GSHf and GSHv methods, we conducted simulation studies to com-
pare them with the GSB. We carried out the simulations within the contexts of each motivating example

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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A

B

C

Figure 2. (A) Rejection region at the final analysis if HA
0

is rejected at the interim for MONET1. In MONET1,
d2 D 2:33, d 0

2v
D 1:97 for GSHv, d 0

2f
D 1:96 for GSHf for the subpopulation. (B) Rejection region at the

final analysis if HB
0

is rejected at the interim for MONET1. In MONET1, c2 D 2:18, c0
2v
D 1:97 for GSHv,

c0
2f
D 1:96 for GSHf for the overall population. (C) Rejection region at the final analysis if neither HA

0
nor HB

0

is rejected at the interim for MONET1. In MONET1, c2 D 2:18, c0
2v
D 1:97 for GSHv, c0

2f
D 1:96 for GSHf

for the overall population; d2 D 2:33, d 0
2v
D 1:97 for GSHv, d 0

2f
D 1:96 for GSHf for the subpopulation.

introduced in Section 1 where the overall ˛ (two-sided in this section) was split equally between the
two primary objectives. We used the ˛ spending function that approximated Pocock boundaries to allow
for a reasonable amount of rejections to occur at the interim. For the GSHv method, if one hypothesis
was rejected at the interim, then the same Pocock-like spending function with the updated ˛ was used to
update the interim and final boundaries for the remaining hypothesis. We performed 10,000 simulations
in each scenario.

In the first simulation study, we designed a hypothetical biomarker study similar to MONET1. We
randomized a total of 1200 subjects to two treatment arms in a 1:1 ratio. The biomarker positive
subpopulation accounted for 60% of the total population. Let A denote the biomarker positive
subpopulation and NA denote the complementary subpopulation. We assumed the primary endpoint to
have a normal distribution with details specified in Table II. Although the treatment effect was larger in
the biomarker subpopulation, the effect was also present in the complementary population. We expected

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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Table II. Simulation settings for the hypothetical biomarker trial.

Subpopulation A Subpopulation NA

Mean (SD) HA
1 HA

0 H
NA
1 H

NA
0

Active 14 (27) 7 (27) 10.5 (36) 7 (36)
Control 7 (27) 7 (27) 7 (36) 7 (36)

HA
1 andH NA1 are the alternative hypotheses;HA

0 andH NA0 are the null hypotheses.

the study to have 85% power to detect the treatment difference in the subpopulation A and 82% power
in the overall population based on the GSB. We separately tracked the power at the interim and final
analyses for the subpopulation A and the overall population. The power to detect significant treatment
effect in both populations and in either population is also provided. We provide the simulation results
in Table III.

As expected, both GSHf and GSHv were more powerful than GSB in all situations. The power gains
were most notable for demonstrating treatment effect in both populations. The power to detect signifi-
cant treatment effect in at least one population was the same for all methods. These results are consistent
with the observations from Figures 1 and 2 noted in Section 4. When comparing between the two Holm
procedures, GSHv had more power at the interim analysis because ˛ reallocation led to updated interim
boundaries. But GSHv had less power at the final analysis and also less overall power (interim and final
analyses combined). Because the hypothesis tests for the subpopulation and the overall population were
correlated, with the correlation dependent on the proportion of the subpopulation to the overall popula-
tion, we had conducted simulations under different assumptions of the correlation; the patterns described
previously remained unchanged (data not shown).

We also evaluated the performance of the group sequential Holm methods by comparing the planned
and average sample sizes with GSB under the alternative hypotheses specified in Table II. We added
the fixed sample design (without interim analyses) as a benchmark in the simulations. For each method,
we determined the planned sample size to ensure 85% power to detect treatment effect in the biomarker
subpopulation. We derive the total sample size so that the biomarker subpopulation is at 60% of the
total. We present the results in Table IV. As expected, the group sequential designs had larger planned
sample sizes than the fixed sample design but lower average sample sizes because of the flexibility to
stop at the interim. Compared with the GSB, the increase in the planned sample size was smaller for
GSHv and GSHf because of the efficiency of the proposed methods. The average sample size for GSHv
is the smallest as it is more likely to stop at the interim. The average sample size is also lower for GSHf
compared with GSB. This is mainly due to the smaller planned sample size of the GSHf.

In the second simulation study, we designed a hypothetical oncology trial where OS and PFS were
primary endpoints. We planned one interim analysis for OS when PFS had reached the final event goal.
We randomized 420 subjects to two treatment arms with a 1:1 ratio. Under the GSB, we expected the
trial to have 75% power .˛ D 0:025/ for PFS with 350 target events and 80% power .˛ D 0:025/ for OS
with 320 target events. We assumed exponential distributions for the time to progression (TTP) and time
to death (Table V).

We defined PFS as the time to progression or death, whichever was earlier. For comparison purposes,
we included the GSHv, GSB, and the fixed sequence method where the PFS was tested first as a primary
endpoint and OS was tested subsequently as a secondary endpoint (Table VI). It should be noted that in
the fixed sequence method, ˛ D 0:05 for each endpoint, if applicable.

There were no surprises in the simulation results as GSHv dominated GSB. It is worth noting that
when the treatment effect was present only for OS but not present for TTP (setting 2), there was no
power gain for OS using GSHv (79%) as no additional alpha reallocation was expected because of the
low power to reject PFS (TTP). However, the power for PFS, although low, was notably higher using
GSHv compared with GSB (23% vs. 17%). This was because the rejection of OS at the interim analysis
was possible, which could lead to updated more favorable boundaries for PFS. Compared with the fixed
sequence method, GSHv had higher power on OS (settings 1 and 2) because of its ability to test OS irre-
spective of the PFS outcome. When the testing sequence was incorrectly specified (setting 2), the power
loss for OS was dramatic for the fixed sequence (24%). The fixed sequence was the most powerful for
PFS because ˛ D 0:05 was used. As a final note on the simulation results, the power for rejecting at least
one hypothesis was the same for GSHv and GSB.
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Table IV. Planned and average sample sizes for the hypothetical biomarker trial.

Powerb Sample size

Approacha Biomarker subpopulation (%) Overall population (%) Planned Average

Fixed sample design 85 82 1070 1070
GSB 85 82 1200 978
GSHf 85 83 1070 904
GSHv 85 83 1100 869

aGSB is the group sequential Bonferroni; GSHf is the group sequential Holm fixed method; and GSHv is the group
sequential Holm variable method.
bThe power for the biomarker subpopulation is fixed at 85% under the alternative hypotheses in Table II.

Table V. Simulation settings for the hypothetical oncology trial.

Time to progression Overall survival

Median survival (months) HA
1 HA

0 HB
1 HB

0

Active 12 9 18 12.5
Control 9 9 12.5 12.5

HA
1 and HB

1 are the alternative hypotheses; HA
0 and HB

0 are the null hypotheses.

Table VI. Simulation results for the hypothetical oncology trial.

Power for PFS Power for PFS
Settings Approacha Power for PFS Power for OSb and OS or OS

1. Treatment effect is Fixed sequence 0.84 0.76 (0:68C 0:08) 0.76 0.84
present for both OS GSB 0.76 0.79 (0:67C 0:13) 0.66 0.9
and TTP GSHv 0.8 0.84 (0:73C 0:11) 0.74 0.9

2. Treatment effect is Fixed sequence 0.25c 0.24 (0:23C 0:01) 0.24 0.25
present only for OS GSB 0.17c 0.79 (0:63C 0:16) 0.16 0.8

GSHv 0.23c 0.79 (0:64C 0:15) 0.23 0.8

3. Treatment effect is Fixed sequence 0.3c – – –
present only for TTP GSB 0.21c – – –

GSHv 0.21c – – –
aSpending function approximating the Pocock boundary is used. GSB is the group sequential Bonferroni; GSHv is the
group sequential Holm variable method. ˛ D 0:05 for PFS followed by OS in the fixed sequence approach. ˛ D 0:025
for PFS and OS, respectively, in the GSB and GSHv.
bOverall power (power at the interim analysisC power at the final analysis).
cPower for progression-free survival (PFS) is provided given treatment effect in either time to progression (TTP) or
overall survival (OS).

6. Discussion

In this article, we have proposed a general procedure to handle inferences related to multiple primary
endpoints in group sequential designs. The group sequential Holm procedure is shown to be a closed
testing procedure and controls the FWER in a strong sense when multiplicities arise from both multiple
analyses over time and from multiple endpoints. The procedure simplifies to the weighted Holm proce-
dure when there is no interim analysis. It is more efficient than the GSB because of the ˛ reallocation
after one hypothesis is rejected. The gains in power come primarily from being able to reject more than
one hypothesis. This has important practical implications as illustrated in the oncology trial example
where any gains in power to demonstrate treatment effect in OS after demonstrating an effect in PFS
will be very desirable. It is worth noting that the method is not expected to have a power advantage for
rejecting at least one hypothesis. The proposed method avoids the need to prespecify a test order as in
the fixed sequence approach.
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Similar to the traditional group sequential designs, the flexibility to stop a trial early leads to lower
average sample size compared with the fixed sample designs. The tradeoff is the increased maximum or
planned sample size in order to maintain power. For the group sequential Holm procedures, the study can
only stop at the interim analysis when all primary hypotheses are rejected. When the GSHv procedure
is used, the interim boundaries may be relaxed because of ˛ reallocation. This procedure will lead to a
higher probability of stopping at the interim analysis than the GSHf procedure.

The choice of the ˛ spending function will also influence the probability of stopping a trial early.
It is well known that O’Brien–Fleming-like boundaries require stronger evidence to stop a trial early
compared with the Pocock-like boundaries in the traditional group sequential setting. The same prin-
ciple applies in the settings we have discussed. In reality, when there are multiple primary endpoints,
different spending functions may be chosen for different endpoints. We recommend prespecification of
the spending functions for all endpoints prior to any analyses. When the information fraction cannot be
determined for an endpoint at the interim analysis, interim boundaries based on the Bonferroni ˛ split
may be used instead of the ˛ spending function. For example, when durable response rate is the primary
endpoint in an oncology study, the final analysis is typically triggered after a specific follow-up time
is reached. The total number of durable responders cannot be anticipated until the final analysis. As a
result, the information fraction at the interim analysis may not be defined. Interim boundaries based on
the Bonferroni method, while not efficient, presents no difficulties to the proposed method.

We have extended the proposed method to multiple primary endpoints and multilook designs. In our
experience, it is more common to have trials with more than two looks than trials with more than two
primary endpoints. When implementing the proposed methods for time-to-event endpoints, the timing of
the analyses may be event driven causing asynchronous number of analyses for each endpoint. As seen
in the oncology example with OS and PFS as primary endpoints, one PFS analysis and two OS analyses
are planned. If an additional PFS interim analysis is desired, the design will have two PFS analyses and
three OS analyses.

In the biomarker examples discussed in the paper, the hypotheses are set up to address the biomarker
subpopulation and the overall population. A concern is that a significant treatment effect in the overall
population is entirely driven by treatment effect in the biomarker subpopulation. An additional ‘effi-
cacy consistency requirement’ may be stipulated so that the effect in the overall population is not
allowed when the treatment effect in the biomarker and the biomarker complementary subgroups are
inconsistent [25].

Finally, it should be noted that the proposed method ignores the correlation among the endpoints.
Huque and Alosh [26] proposed a flexible fixed sequence procedure to take into account the correlation
in group sequential trials. However, in most clinical settings, it is difficult to justify that a certain degree
of correlation can be obtained reliably among endpoints. When it is possible to quantify the correlation
(e.g., the biomarker subpopulation case) or when a bound on the correlation can be estimated, further
gains on efficiency may be achieved. In these situations, additional research is needed to incorporate the
correlation into the proposed procedure.
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