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SUMMARY
An efficient numerical algorithm is developed for computing stopping boundaries for group sequen-
tial clinical trials. Patients arrive in sequence, and are randomized to one of two treatments. The
data are monitored at interim time points, with a fresh block of patients entering the study from one
monitoring point to the next. The stopping boundaries are derived from the exact joint permutational
distribution of the linear rank statistics observed across all the monitoring times. Specifically, the
algorithm yields the exact boundary generating function,

Pr(W,<by, Wo<by, ..., Wi_1 <bi_y, W, =wy),

where W, is the linear rank statistic at the jth interim time point. The distribution theory is based on
assigning ranks after pooling all the patients who have entered the study, and then permuting the
patients to the two treatments independently within each block of newly arrived patients. The
methods are applicable for an arbitrary number of monitoring times, which need not be specified at
the start of the study. The data may be continuous or categorical, and censored or uncensored. The
randomization rule for treatment allocation can be adaptive. The algorithm is especially useful
during the early stages of a clinical trial, when very little data have been gathered, and stopping
boundaries are based on the extreme tails of the relevant boundary generating function. In that case the
corresponding large-sample theory is not very reliable. To illustrate the techniques we present a group
sequential analysis of a recently completed study by the Eastern Cooperative Oncology Group.

1. Introduction

Suppose patients enter a two-arm randomized clinical trial in sequence. The objective is to deter-
mine whether one treatment is better than the other with respect to some response criterion. The
study is designed to accrue patients until some predetermined maximum limit is reached. We wish
to build in criteria for early stopping by computing exact permutational repeated significance tests
on the steadily accruing data. We shall follow the group sequential framework of Pocock (1977). This
means that the data are monitored at interim time points, rather than continuously, as the study
progresses. Given the administrative complexity of modern clinical trials, this is a realistic assump-
tion. Our methods are flexible as regards the frequency of the data monitoring. It is not necessary
to specify in advance the maximum number of looks at the data, or the time interval between looks.
These parameters can be determined adaptively as the study progresses through the ““use function”
approach of Lan and DeMets (1983).

Each time the data are monitored, treatment effectiveness is summarized in terms of a linear rank
statistic, derived by pooling all the patients accrued so far, and ranking their responses. Exact
distribution theory is developed by permuting these ranks between the two treatment arms. The
permutations are enumerated in independent patient blocks, where each block contains the new
patients who entered the study since the last time the data were monitored. Stopping boundaries for
the linear rank statistics are then derived. It has been noted by Puri and Sen (1971), Schoenfeld and
Tsiatis (1987), and O’Brien and Fleming (1987) that rank tests depending only on within-block ranks
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can have reduced power. For this reason we pool all the patients, thereby utilizing interblock
information, before assigning ranks. However, once the ranks have been assigned, the permutations
are carried out independently in each block. This ensures protection against time trends. Schoenfeld
and Tsiatis (1987) suggest that, in the absence of time trend, such tests, based on pooled ranks and
intrablock permutations, are asymptotically efficient.

The main result in this paper is an efficient numerical algorithm to solve the permutation problem.
Ina group sequential setting, the permutational distribution from which stopping boundaries may be
derived is multivariate, a formidable obstacle to exact inference. Generalizations of the network
algorithms of Mehta, Patel, and Tsiatis (1984), and Mehta, Patel, and Wei (1988) were used to
compute the relevant multivariate probabilities. The algorithm applies to continuous as well as
ordered categorical outcomes. The methods are illustrated by an example of a clinical trial recently
completed by the Eastern Cooperative Oncology Group.

Related to this paper is the work of Pawitan and Hallstrom (1990), and Lin, Wei, and DeMets
(1991). Pawitan and Hallstrom reported using the joint permutation distribution of rank statistics to
derive exact monitoring boundaries in the Cardiac Arrhythmia Suppression Trial, but do not
describe their numerical algorithm. Lin et al. used a network algorithm to compute exact stopping
boundaries for group sequential clinical trials with binary outcomes.

2. Mathematical Formulation

Assume that a randomized two-arm clinical trial has just been activated. Patients enter the study in
sequence and are assigned to either treatment A or treatment B according to some (possibly restricted)
randomization rule. The response variable is some quickly observable measure of treatment effective-
ness such as tumor regression, or drug toxicity. (Extensions of this methodology to a delayed response
like survival will be discussed in the last section of this paper.) The study has been planned so that at
most ¢ patients will be admitted. However, the data are monitored at interim time points and the study
may be stopped before its accrual goals are met if one treatment appears to be significantly better than
the other. The problem is to obtain criteria for early stopping which limit the Type I error rate to some
prespecified level of significance. This problem is formulated more precisely below.

Data monitoring occurs at interim time points that may be regularly spaced or sporadic, at the
convenience of the investigator. At each look, j, we accumulate a fresh block of ¢ patients, n; on
treatment A, and ¢; — n; on treatment B. Thus by the end of the ith look, the data may be represented
in the form of i 2 X #; contingency tables,j =1, 2, ..., i, as shown below:

Data at first look

Patient response

Treatment n 121 e Z’ll Total
A X1 X21 e X1 n,

B 1 —xy 1 — x5 . 1 —x, 5L —m
Total 1 | 1 1,

Data at second look

Patient response

Treatment 253 22 W Zi2 Total
A X2 X22 el Xe2 ny
B 1 — x5 1 — x5 1= x, 1, — Ry

Total 1 1 “es 1 b

Data at ith look

Patient response

Treatment Zy; 22 a Zyy Total
A Xyi Xzi ot Xy n;

B 1 =.x5; 1 —a; 1 —x, t;,—nm
Total 1 1 1 t;
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In the above tables z;; is the response observed for the Ith patient in the jth block of data, and Xy is
1 if that patient was assigned to treatment A, 0 otherwise. Let

X = (g, Xojy e s x,jj)’

denote the (¢; X 1) vector of treatment assignments for all the ¢; patients in the jth block of data, and
let

2 = (2qpy Z3j5 -0 5 z,’,j)'

denote a (¢; x 1) vector of responses for these t; patients. This notation does not preclude tied or
ordered categorical responses, since the components of the z; vector need not be distinct. In fact, the
example in Section 4 deals with ordered categorical toxicity data.

We will base our inference on repeated linear rank tests which are designed to preserve some
overall significance level. To do this we first convert all the z, + ¢, + *** + ¢, responses of the form
Z), 2y, ... , %, that have been observed by the end of the ith look into corresponding ranks rf{’,
ry) r{, where

2 RSN

l}(") = (r(l‘}, r(‘?’ e | ri:} 4

and #{}’ is the rank of the /th patient in the jth block of patients at the end of the ith look. The
superscript (i) is necessary because the ranks are assigned among all the patients that have accrued
by the ith look, and might be updated when the (i + 1)th block of patients accrue. For example, r{)
is the rank of the first patient among the first , patients, whereas #{ is the rank of that same patient
among the first £, + ¢, patients. Note that r{") is undefined if i < j. We define, for allj < i,

RP = ('], rf, ... ).
Now suppose we want to test the null hypothesis
H,: treatments A and B are equivalent,
against the one-sided alternative hypothesis
H,: treatment A is better than treatment B.

In order to test H,, we compute a linear rank statistic each time we look at the data, using the current
set of ranks. By the time of the ith look, a set of treatment allocations

Xi = (X;D x’Z’ LECS | x;)’:
and a set of ranks, R{"), are available so that we can compute the linear rank statistic

w; = RI'X,. (2.1)

£
I =4{x: Y x; =n, x; €{0, 1} for all /
=1

and form the product set
O, =T, xI';x-+xT.

The permutation distribution of the random variable W; is derived by fixing the responses, r?), at
their observed values and considering all possible permutations of treatment allocations

X, €0,

Each such permutation of the treatment allocations yields a realization of W, and has a probability
that depends on the randomization scheme used to allocate patients to the two treatments. Under
complete randomization the probability of each permutation is

5 —
1 (,‘,) : @2
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Equation (2.2) could be suitably modified as discussed in Mehta et al. (1988) if a restricted
randomization scheme were used in place of complete randomization.

We summarize the accumulating data in terms of wy, w5, ..., w;. The problem to be addressed
is how to obtain stopping boundaries b,, b,, ..., b; so that if

wy<b, wa<by ..., wi_1<bi_;, w;2b,

we stop the study; otherwise we continue to the (i + 1)th look. The stopping boundaries must be
selected in such a way that the above early stopping procedure preserves the prescribed Type I error
rate, o, say. The first step is to decide how much of the total available Type I error rate to ““use up™
or “spend’’ during each repeated significance test. Slud and Wei (1982) proposed that the total error,
a, be partitioned a priori into k quantities, a,, ay, ... , &, where k is the maximum number of looks
and E}‘zl a; = a. They would then compute stopping boundaries so that the probability of stopping
at the ith look was a;, and hence the probability of stopping by the kth look was Zf_, a;. Lan and
DeMets (1983) suggested that the significance level be partitioned according to a function of the
proportion of total information obtained. Such a function is called a “‘use function’ or ““error
spending function.”” It is a monotone increasing function a(p), 0 < p < 1, with o(0) = 0 and (1) =
a. The value p denotes the proportion of the total information that has so far accumulated in the
clinical trial. In the present context this information is equivalent to the proportion of the total
sample size, ¢, that has accrued so far. In the Lan and DeMets (1983) approach, the probability of
stopping at the ith look need not be specified a priori as in Slud and Wei (1982), but rather is equal
to a(p;) — a(p;-,), where

pi=(tt i+ 0,

and af p;) is the probability of stopping by the ith look. Another advantage of this method is that one
need not specify k, the maximum number of interim looks, although one would have to specify ¢, the
maximum amount of information.

To be specific, we look at the data for the first time after ¢, patients have accrued. At this stage
we are now allowed to use up a(p;) of the total available Type I error rate. To do so we stop the
study by rejecting H,, if the observed w, 2 by, where the stopping boundary, b, at the first look must
satisfy

Pr(W, 2 b,) = g, < a(p,)

and, due to the discreteness of the distribution of W), g, is as close as we can possibly get to a(p,)
without exceeding a(p,). If w, < b,, we do not stop at the first interim test point. Then the data are
monitored a second time after the next ¢, patients enter the study. At this stage we are allowed to
use up a(p,) of the total error. We stop the study, rejecting Hy, if the observed w, > b,, where the
second stopping boundary, b,, is such that

gy + Pr(W, < by, W, 2 b,) = g, < a(p,),

and again, due to discreteness, g, is as close as we can get to a(p,) without exceeding it. In general,
the ith stopping boundary, b;, is obtained by solving

Gi1+Pr(Wy<by, ..., Wi <b_y, W; 2 b)=gq; < a(p), (2.3)

where g, is as close as we can get to af p,} without exceeding it.

: If we do not stop the study at any of the interim looks, we will have to stop it at the terminal look,
k, say, after all £ of the subjects that we planned to accrue have entered the study. We will reject H,
if the observed w,, = b, where b, is such that

Gy +PIWy <by, ... , W1 <bp_, Wi Z2b)=qxS a, (2.4)

and g, is as close as we can get to a without exceeding it. If the observed w, < b, we will accept
Hy. . 5 -

The above procedure guarantees an overall significance level of at most « since the probability of
crossing one of the boundaries under the null hypothesis is

g+ (G@—q)+ (G —Ge—r) =G S .

Notice that we have provided full flexibility in the choice of k and the monitoring points p,, p, - . ,
p. These quantities need not be prespecified. They may be selected adaptively as the trial

e
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progresses, at the convenience of the trial administrator. However, to achieve this flexibility we
must specify a use function, afp). Following Lan and DeMets (1983), many use functions have been
proposed; see also Kim and DeMets (1987). Two popular use functions, corresponding respectively
to the Pocock and O’Brien-Fleming stopping boundaries, are

a(p) = aln(l + ep — p) (2.5)

and

&K1 - af2
(1-af )}’ (2.6)

a(p)=2-2¢
. { N

where ®(*) is the right tail of the standard normal density function. These use functions were chosen
to capture the spirit of the Pocock and O’Brien-Fleming stopping boundaries. If large-sample rather
than exact distribution theory were applied, the Pocock use function would correspond to stopping
the trial when the standardized test statistic exceeded some constant. Similarly, the O’Brien-
Fleming use function would correspond to stopping the trial when the unstandardized accumulating
statistic, which behaves like Brownian motion, exceeded some constant. The numerical example in
Section 4 computes stopping boundaries based on the O’Brien-Fleming use function.

Exact joint permutational probabilities for correlated random variables, such as those appearing
in (2.3), are ordinarily intractable. The next section describes a numerical algorithm for obtaining
them, and the corresponding stopping boundaries, efficiently.

3. Network Algorithm

Suppose we are currently at the ith look, having previously computed the stopping boundaries b,,
by, ..., b;,_,, and used up g,_, of the prescribed significance level. In order to compute b, we need
the boundary generating function

filw)=Pr(W,<by, ... , Wi, <b,_,, W;=w,)

for all values of w; at which f,(w;) > 0. It is then possible to find the largest b, that satisfies equation
(2.3). The function f; and its domain are obtained by stagewise processing of a series of { networks.
These networks are defined next.

3.1 Network Representation of Reference Sets

When we look at the data for the ith time, we have i reference sets, I'y, I',, ... , I[;. It is convenient
to represent each of them as a network of nodes and arcs. The network representation for I, is
formed in #; + 1 stages labelled 0, 1, ... , ;. At stage ! it consists of a set of nodes of the form (/, s,),
where node (a;, b;) implies that of the first a; subjects within the jth group, exactly b; have been
assigned to treatment A. The network begins with a single node (0, 0). For/ = 0,1, ...,¢;, — 1, each
node (/, 5,)) generates successor nodes, ({ + 1, s5,,, ), say, in the range

max(sy, n; —; + 1+ 1) < 50, ; < min(n;, s; + 1). (3.7

As a consequence of (3.7), all these sequences of nodes will automatically end with a single terminal
node (#;, ;) at stage ¢;. Each node is connected to its successors by arcs. A path through the network
is a sequence of connected arcs of the form

0, 0) = (1, s5y)) == (1, ny).

Each path corresponds to a unique x; € I';, where x,; = s; — 5,_, ;. Hereafter we use s;; — s,_, ; and
x; interchangeably, recognizing the implicit relationship

S;J=x11 +x2j+ LA +xlj'

Let the length of the arc connecting node (! — 1, 5,_, ;) to node (I, s;) be the (i — j + 1) X 1 vector
a;x;, where

aij = (?’(é), r(é:+l]: vy "g))'-

The length of any sequence of connected arcs is defined to be the sum of lengths of the individual
arcs in the sequence. Thus the length of any path, x; € I, is the ({ — j + 1) X 1 vector
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L]
2 ayxy. (3-8)
=1

Although we have defined the above network abstractly, one can think of [; as the set of all possible
ways that the jth block of patients could be assigned to the two treatments, conditional on there
being exactly n; assignments to treatment A and #; — n; assignments to treatment B. Each path,
x; € T}, represents one way of assigning the treatments to the jth block of patients. The (i —j + 1)
x 1 path length (3.8) then represents the contribution of that path to the test statistics w;, wj, 4, - -+ »
w;. The first element of this vector is the contribution made by the jth block of patients to w, the next
element is the contribution of the same block of patients to w;., 1, and so on.

One may interpret the set ©, as an extended network in which the smaller networks I'y;, I'5, ...,
I, are positioned one after another in series. A path through the extended network corresponds to
aunique X; € 0,

1.2 Forward Processing of the Networks at Look i
The i networks that were constructed at look i are processed, one by one, in such a way that by the
time the terminal node (¢;, n;) of the ith network is reached, we obtain the boundary generating
function, f(w;), and the corresponding boundary value, b,. It suffices to specify the algorithm for
processing I, the jth of the i networks. By applying this algorithm repeatedly atj = 1, 2 mnnn by WE
can process all the i networks.

Suppose that we have already processed the first (j — 1) networks and have thereby enumerated
all the paths

1 ={Xi-1€EB_1iw; < By, Wi < bigy won s Wiy <Bya}- (3.9)
ForeachX; , € ©7F , there corresponds a (not necessarily unique) value of the (i —j +1) x 1vector
u=(RX;_,, RVX g, eees R, X 1) (3.10)

Now define

the count of the number of distinct paths,} 3.11)

c(u) = {xj_l € ®]_,, yielding the same u.

The algorithm for processing the jth network begins at node (0, 0) of T;, and assumes that the set of
records

0,0, 0) = {(u, c(w)): X;, EO]_1}

were obtained in the course of processing the previousj — 1 networks. It then carries these records
through the nodes of I';, stage by stage, in such a way that we eventually end up at its terminal node,
{t;» n;), with an updated set of records, Q(t;, 1)), containing all the information needed to process the
(j + )th network, or, if j = i, to extract the boundary generating function f(w;).

Processing the intermediate stages of each network. We define the algorithm for processing T;
recursively. Suppose we have reached stage 1 of this network and have obtained a set of records,
Q(, s;), at each of the nodes of stage I. The following five-step algorithm is used to update these

records and thereby move forward to stage [ + 1, forl = 0,2, ..,

Step 1: Select a record (u, c(u)) € (L, sp)-

Step 2: Transmit a copy of this record to each successor node (! + 1, 5,4, ), Where the successors
are identified by (3.7).

Step 3: At each successor node, (I + 1,5144, ;), transform the transmitted record to (ug, ¢o), where
u, = u + a8, ;X1 and ¢ = c(u).

Step 4: Insert (u,, cq) into (I + 1, 5,44, ;) as follows:

1. If there already exists a record (u, c(u)) € Ql + 1,54, ;) such that u = u,, then merge
the two records by replacing (u, c(u)) with (u, c(u) + co) E QU + 1, 5044,)-

2. If no record currently in Q,(/ + 1, 5,4, ;) has u = u,, then augment (! + 1, 5,4, ;) by
adding (ug, ¢o) to it, as a new record.

The technique of hashing (Sedgewick, 1983, p. 201) is used to search for matches and

either merge or augment records in {4/ + 1, 514, ;)- This ensures an optimum trade-off

between efficient use of available memory and fast search.

Step 5: Return to step 1.
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The above five-step algorithm continues until every record in (1, s,;) has been processed. Then
another node at stage / is selected, and all its records are processed in accordance with the above
five steps. When all nodes at stage / have been exhausted, repeat steps 1-5 for stage [ + 1.

Starting with (0, 0) and moving through stages 0, 1, ..., t; — 1 by repeatedly carrying out steps
1-5, we process the entire I'; network, ending up at its terminal node with the set of records Oy, ny).
Note that each record, (u, c(u)) € 4z, n;), has been transformed by its passage through the I;
network, and no longer satisfies equations (3.10) and (3.11). Instead,

u=(RYX;, RV*VX, ..., RYX)Y, (3.12)

where

Xy
x=(%")

J

is such that X; € ©,, X;_, € ®;_,, and

the count of the number of distinct paths, X; € @,
c(u) = { that give rise to the same u, while preserving the }. (3.13)
boundary condition, X;_, € ©}_,.

Also, by (2.1), the first element of each record, R{/’X,, is a permutational value of the jth linear rank
statistic, w;.

Processing the last stage of each network. Some final processing of the records, Q(r;, n)), is
required at the terminal node, (¢, n;), of I';. The nature of this processing depends on whether j<
forj = i. The two cases are discussed separately below.

Casej < i: In this case the set of records, Qj(tj, n;), must be suitably updated so as to form the
starting set of records, (), (0, 0), for the processing of I;,1- There are two parts to this update.
First, eliminate those records of (¢, n,) in which the first element, RVX; 2 b;. It is clear that such
records cannot contribute to the boundary generating function since R{/ )Xj = w; and the sample
space of fi(w;) excludes the event w; > b,. Once this is accomplished, the first element of each record
in the reduced set serves no further purpose and may be discarded, thereby decreasing the
dimensionality of that record by 1. This reduced set of records, each of lower dimensionality than
the original records in {)(f;, n;), constitutes the starting set of records for processing I, ;. These
records are of the form

10, 0) = {(u, c(w)): X; € 0]},

where 07, u, and c(u) are defined by equations (3.9), (3.10), and (3.11), respectively, with j being
replaced throughout by j + 1. The same algorithm can now be invoked for processing I, , ;.

Casej = iz In this case the records in {)(t,, n,) are automatically of the form {w;, c(w))), and c(w,)
is the boundary generating function, f;(w,), up to a normalizing constant. The normalizing constant
is the count of all possible paths through the sequence of i networks, which is easily seen to be the
reciprocal of (2.2). One may now use (2.3) to compute b,. This completes the forward processing of
the networks at the ith look.

Initiating the network algorithm. Finally, to complete the recursive description of the network
algorithm, we need to specify the starting set of records at node (0, 0) of I',. We start with the
singleton set, £,(0, 0) = {(0, 1)}, where the 0 is an (i X 1) vector of zeros, and its count is c(0) =
1. We then move through all the i networks in sequence as described above.

3.3 Early Elimination of Records

Consider the record (ug, ¢,) just prior to its insertion into O + 1, 5., ) at step 4 of the five-step
algorithm. It would be advantageous to eliminate this record instead of carrying it along since that
would reduce the number of records to be processed in the future. The question is, can this record
be dropped without affecting the final boundary generating function, filw;)? From the previous
section’s discussion of how to process the last stage of each network, it is clear that if the record is
carried along, its updated version, (u, c(u)) € Q(t,, n,), will be dropped provided

RYX, > b,, (3.14)



Exact Group Sequential Tests 1049

forany g =j,j + 1,...,i — 1. We now show how to determine in advance whether (3.14) holds.
Let T'(l, s,) be the subset of all the paths of the I'; network that originate at node (, sy) and
ferminate at node (¢;, n;). (In this notation I'; = T}(0, 0).) Now define, forg =j,j + 1, ..., i,

SPO, s;) = min{rifcy + rfy jxXpa; +o 0+ rdgh (3.15)

where the minimum is taken over all the paths in I;(/, s;;). Finally denote the components of the
(i —j + 1) x 1 vector, u,, created at step 3 of the five-step algorithm, by

ug = @, W+, ..., ul).
We now have the following theorem.

Theorem 1. The record, (uy, ¢), created at step 3 of the five-step algorithm can be dropped without
affecting f,(w,) provided, for at leastone g € {j,j + 1,..., i — 1},

uf + SPO + 1, 51,1 ,) + SPE,(0, 0) + -+ + SPLA0, 0) 2 b, (3.16)

The proof is straightforward. If (3.16) holds for any g, every path X, € @, that passes through the
node (! + 1, 5, ;) must be such that RiX,, > b,. Thus these paths cannot belong to ®} and cannot,
in consequence, belong to the sample space of fi(w,).

In order to use Theorem 1, we need to compute (3.15). This can be done very easily by use of the
following theorem.

Theorem 2. The minimum of a weighted sum, Zf_, ax;, subject tox; € {0, 1}, and Z{_, x; = n, is
gy * By + °0 + @, Where g S ag) < 0° < a, are the order statistics of the a’s.

The proof is by contradiction.

3.4 Why the Network Algorithm Is Efficient

The network algorithm just described is considerably more efficient than simply enumerating all the
X; € @, exhaustively. There are three reasons for this efficiency gain: clubbing, record elimination,
and direct derivation of the boundary generating function.

Clubbing. Clubbing is the merging of two records, as described at step 4.1 of the five-step
algorithm for updating records. The more often records merge with other records, the fewer
records remain for processing at later stages. We refer to the merging of two records as
clubbing. If there were no clubbing whatsoever, the number of records to be processed would
grow exponentially and the algorithm would soon become infeasible. The extent of the clubbing
depends on the choice of the ri) scores. Considerable clubbing occurs with Wilcoxon scores
because these scores can be integerized by doubling. One can show that the number of
operations required to process the entire network is O(t3 x 13 X ==+ % t}). Thus even without the
additional efficiency gains described below, the algorithm is polynomial in the number of
observations, for group sequential Wilcoxon tests. On the other hand, the log-rank scores, being
sums of reciprocals, cannot be easily integerized. Therefore clubbing occurs less frequently and
the algorithm is no longer polynomial. One way to make the algorithm polynomial is to truncate
the log-rank scores to a fixed number of decimal digits (say 2 or 3). The error introduced by such
truncation can be corrected most efficiently by Monte Carlo sampling techniques. This idea has
been researched in the doctoral dissertation of one of the authors. [See Senchaudhuri, Mehta,
and Patel (1995).]

Record elimination. Efficiency gains are possible by eliminating records entirely, provided they
satisfy the SP condition described in the previous section. Since records have a tendency to
propagate and multiply, this type of early record elimination is very advantageous. This is
especially true when the scores are unequally spaced and do not result in much clubbing.

Direct derivation of the boundary generating function. The network algorithm circumvents the
need to generate the full multivariate distribution of (W;, W, ..., W) and then extract the
boundary generating function, fi(w;), from it. Generating a full multivariate distribution is a very
computationally-intensive problem, and would consume excessive amounts of computer memory.
Notice however, from (2.1) and (3.10), that only the partial distribution of (W;, W, ..., W) is
being carried through the I'; network. When we move to I;41, the W, component is dropped
since we have used it by then to satisfy the condition, W; < b;. Thus we never have to carry
along a full multivariate distribution in i dimensions.
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4. Application to a Clinical Trial
Protocol EST 2289, conducted by the Eastern Cooperative Oncology Group (ECOG) in 1985-1986,
was a study of 4-Deoxydoxorubicin versus Acivicin in patients with primary liver cancer. (See
Cnaan and Mullin, Technical Report 57, Dana-Farber Cancer Institute, Boston, 1989.) In all, 75
patients were admitted to the trial. The study showed, among other things, that 4-Deoxydoxorubicin
produces significantly more hematologic toxicity than Acivicin. Although this study was not de-
signed for early stopping based on excessive toxicity, we will use it as an illustrative example of our
group sequential methods. Suppose we wish to limit the Type I error rate to .05, and plan to inspect
the data at interim time points, stopping the study early if it appears that 4-Deoxydoxorubicin has
excessive hematologic toxicity relative to Acivicin. A one-sided sequential test is appropriate
because 4-Deoxydoxorubicin was expected to be myelosuppressive.

The data were monitored at three interim time points, after 30, 43, and 57 patients had entered the
study, respectively. An interim report was produced at each of the three interim points. The data on
hematologic toxicity shown below are extracted from those three reports:

Data at first look

Patient toxicity

Treatment Acceptable Severe Life-threat Lethal Total
4-Deoxy. 6 7 1 0 14
Acivicin 15 1 0 0 16
Total 21 8 1 0 30

Additional data at second look

Patient toxicity

Treatment Acceptable Severe Life-threat Lethal Total
4-Deoxy. 2 5 0 0 7
Acivicin 6 0 0 0 6
Total 8 5 0 0 13

Additional data at third look

Patient toxicity

Treatment Acceptable Severe Life-threat Lethal Total
4-Deoxy. 6 1 0 1 8
Acivicin 6 0 0 0 6
Total 12 1 0 1 14

A final report was produced after all 75 patients had entered the study. The combined hematologic
toxicities of all 75 patients are tabulated below:

Final count of hematologic toxicity

Patient toxicity

Treatment Acceptable Severe Life-threat Lethal Total
4-Deoxy. 22 13 3 1 39
Acivicin 34 2 0 0 36
Total 56 15 3 1 75

It is appropriate to analyze these data with the Wilcoxon rank sum test (using midranks to
accommodate the ties). An analysis of the final toxicity data by StatXact (1989) reveals that
4-Deoxydoxorubicin is significantly more toxic than Acivicin (P-value = .0014). It would be
interesting to see whether an exact group sequential approach would have picked up this effect at
one of the interim looks. Suppose we are interested in limiting the overall Type I error rate to .05
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but wish to spend that error over four looks, in accordance with the O’Brien-Fleming use function
{2.6). The error available for spending, the error actually spent, and the stopping boundary at each
look are tabulated below. The exact computations in this table consumed less than one CPU minute
on a Gateway 2000 80486/33C personal computer.

& Error actually spent (g;) Stopping boundaries (b;)
ITOT
Look Information  available Exact Asymptotic
i )2 a(p;) Exact Asymptotic  boundaries = boundaries
1 30/75 .0019 .00014 .0031 289.0 272.6
2 43/75 .0093 .0091 .0104 546.0 542.0
3 57175 .0240 .0203 .0212 947.5 938.9
4 75175 .0500 .0392 .0389 1,611 1,606

In the above table, the asymptotic stopping boundaries were derived from the large-sample joint
distribution of {W,, W,, ..., W;}. This distribution is multivariate normal with
min(i,j) )
cov(W,, W)= 3 r'wivar(xgry, (4.17)
k=1

where the variance matrix of x, is easily obtained from standard multivariate hypergeometric theory.
The error available for spending at each look, a(p;), is computed from the O’Brien-Fleming use
function (2.6). The error actually spent at each look, g;, is obtained by substituting the appropriate
stopping boundaries into equation (2.3). Due to the discreteness of the test statistic, the error
actually spent does not equal the error available for spending. However the exact method is
conservative and guarantees that the error actually spent will never exceed the error available for
spending. The asymptotic method provides no such assurance, and indeed at the very first look the
error actually spent (.0031) is 50% greater than the error available for spending (.0019). This
translates into a substantially smaller asymptotic stopping boundary (272.6) compared to the exact
stopping boundary (289). Now the Wilcoxon rank sum statistic actually observed at the first look is

wy=11xX6+25.5%x7+30x1=274.5.

Since this value exceeds 272.6, the study would be prematurely terminated at the first look, if the
decision were to be based on the asymptotic rather than the exact stopping boundary. This
disregards the spirit of the O’Brien-Fleming strategy, under which one is required to be extremely
conservative about stopping during the early stages of a trial.

At the second look the error spent by the asymptotic method again exceeds the error available for
spending. But this time the discrepancy between the asymptotic and exact errors spent is less. Also,
the Wilcoxon rank sum statistic observed at the second look is w, = 595, exceeding the exact
stopping boundary of 546. Thus the study would have been terminated at the second look under
sequential monitoring.

The discrepancy between the errors spent by the asymptotic and exact methods diminishes
further at subsequent looks because one is no longer operating so far out in the tails of the boundary
generating function. In fact, by the end of the study, the two methods have spent almost the same
amount of error.

5. Miscellaneous Remarks
The network algorithm is polynomial in the number of observations, as long as the rank scores are
truncated to a fixed number of decimal digits. Note however that the algorithm is exponential in the
number of looks. It is interesting also to observe that the memory requirements of the algorithm
display similar characteristics. Fortunately the cost of memory has plummeted as newer and more
powerful personal computers come on the market.

If the randomization rule for treatment allocation is adaptive, the above large-sample theory does

not apply, but the exact algorithm can still be used, by suitably modifying equation (2.2).

The exact algorithm is particularly useful at the early looks, when very little data have been
gathered and stopping boundaries are based on the extreme tails of the boundary generating
function. In this case asymptotic theory might not be very accurate. We have just seen in the
previous example that the asymptotic stopping boundaries led to inappropriate early stopping at the
very first look.
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The exact algorithm can be readily adapted to two-sided tests, since the output from each look is
the entire boundary generating function.

The exact algorithm was described in the context of an instantaneous response variable. How-
ever, the same algorithm goes through for time-to-failure data with possible censoring. Now the
original data consist of pairs of observations (a survival time and a censoring indicator) for each
subject. These bivariate raw data scores can be readily converted into log-rank scores, generalized
Wilcoxon scores, or other univariate rank scores that incorporate the censoring, using the methods
discussed in Prentice (1978), or Prentice and Marek (1979). Thereafter the permutational problem is
the same. A further modification is necessary for computing the available information at a given
look. The information is needed as input to the use functions (2.5) and (2.6). For instantancous
response the information is defined as the proportion of the total sample size that has accrued so far.
However, for censored survival data the information is related to the number of failure events
(deaths). Thus, letting d, denote the number of deaths at the ith look, the information is specified by

pPi= E djfd:

j=1

where d is the maximum number of deaths needed for the trial to stop.
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RESUME

Nous présentons un algorithme numérique permettant de déterminer les régles d’arrét dans le cas
d’essais cliniques séquentiels. On suppose que les patients entrent les uns a la suite des autres dans
’essai, o0 I'un des deux traitements leur est alloué de maniére randomisée. Les données sont
évaluées 2 des temps intermédiaires, temps entre lesquels s’ajoutent a chaque fois une série
supplémentaire de nouveaux patients. Les valeurs limites liées aux régles d’arrét sont obtenues a
partir de la distribution conjointe exacte des permutations de la statistique de rang observée sur
I’ensemble de ces temps intermédiaires. Plus précisément I"algorithme donne la fonction exacte
générant ces valeurs limites,
Pr(Wy <by, Wy <by, ..., Wiy <b;_y, Wi=w),

ol W, est la statistique de rang au temps intermédiaire j. La distribution théorique de cette statistique
s’obtient en attribuant des rangs 2 tous les patients déja inclus dans I’essai, puis en permutant leur
appartenance aux deux groupes de traitement, au sein de chaque série de patients comprise entre
deux temps intermédiaires. Cette méthode peut s’appliquer 4 un nombre arbitraire de temps
intermédiaires non nécessairement défini préalablement a I’essai, a des données continues ou
qualitatives, censurées ou non, a une randomisation adaptative ou non. Cet algorithme est particu-
litrement intéressant au tout début d’un essai clinique, lorsque peu de données sont encore
disponibles et que les valeurs limites sont obtenues a partir des queues de distribution, situation dans
laquelle la théorie asymptotique est peu fiable. A titre d’illustration nous présentons I’analyse
séquentielle d’un essai récemment effectué par ’Eastern Cooperative Oncology Group.
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