East®SurvAdapt

Software for Adaptive Sample Size Re-estimation of Confirmatory Time to Event Trials

Cytel Webinar October 28, 2010

Cyrus R. Mehta, Ph.D President, Cytel Inc., Cambridge, MA

email: mehta@cytel.com - web: www.cytel.com - tel: 617-661-2011

1

Outline of Presentation

- Motivating example: non-small-cell lung cancer trial with optimistic and pessimistic assumptions about HR
- Sample size requirements of pessimistic design too great for an up-front commitment
- Promising zone design: design optimistically and commit additional resources only if interim results are promising
- Software demonstration of design, simulation and interim monitoring with East®SurvAdapt
- Concluding remarks

Lung Cancer Example

- Two arm, multicenter trial with second line therapy for metastatic non-small cell lung cancer
- Primary endpoint is overall survival (OS)
- Median for control arm is 8 months
- Require 90% power to detect HR = 0.7 (median = 11.4 months on experimental arm)
- One-sided level 0.025 test with one interim look for early efficacy or futility stopping
- Design 24 month enrollment and 12 months additional follow-up

Group Sequential Design

Ourwar Superionty mais. Two Sample Test- Logrank Test. Siven Accrual Duration and Stu

Plan ID		Plan1			Plan2	
Test Parameters						
1-Sided or 2-Sided Test		1-Sided			1-Sided	V
Significance Level (Alpha)		0.025			0.025	¥ I
Power (1 - Beta)		0.9			0.9	¥
Assigned Fraction (Treatment)		0.5			0.5	1
Boundary Parameters						
Planned Number of Looks		2			2	
Spacing of Looks		Equal			Equal	¥
Hypothesis to be Rejected		H0 or H1 (NB)			H0 or H1 (NB)	¥
Boundary Family		SpF (Pub)			SpF (Pub)	¥
Boundary to Reject H0		LD (OF)			LD (OF)	¥
Boundary to Reject H1		Gm (-5)			Gm (-5)	¥
Survival Parameters						
-Log-hazard Ratio		0.3567			0.2614	¥
Number of Hazard Pieces		1			1	¥
Number of Accrual Periods		1			1	¥
Variance of -Log-hazard Ratio		Null			Null	¥
Committed Accrual						
Committed Accrual (Duration)		24.0			24.0	¥
Committed Accrual (Subjects)		417			763	
Max. Duration and Events						
Maximum Study Duration		36.0			36.0	¥
Maximum Number of Events		333			620	
Expected Values under	HO	H1	H ½	HO	H1	H 1⁄2
Expected Accrual (Subjects)	377	400	407	692	730	743
Expected Study Duration	26.348	31.852	31.981	26.949	31.821	32.5
Expected Number of Events	258	290	311	480	539	578

Adaptive Strategy

- Design optimistically (HR=0.7; 333 events; 417 subjects)
- One interim analysis after 50% information
 - Stop if overwhelming evidence of efficacy ($\widehat{HR} \le 0.63$)
 - Stop if overwhelming evidence of futility ($\widehat{HR} > 1.02$)
 - Increase number of events and sample size at the interim if interim results fall in a promising zone
- Can define promising zone equivalently in terms of conditional power, or HR, or Z-statistic

The Promising Zone Design

- Partition the interim outcome into three zones based on the estimate conditional power. For example: Unfavorable: CP < 30%; no change in design Promising: 30% ≤ CP < 90%; increase resources Favorable: CP ≥ 90%; no change in design
- Use simulation to experiment with promising zones
- Use simulation to experiment with sample size re-estimation rules
- Use Cui, Hung, Wang (CHW) method or Chen, DeMets Lan (CDL) method to control type-1 error

Conditional Power Calculator

Conditional Power Calculator	x
-Input	
Current Look.	
Current # of Events: 167	
-Input/Output	
HR to be Used in Conditional Power Computation	
C <u>A</u> rbitrary (HR)	
Computed Value of HP: 0.839	
	·
Computed value of z: 1.132	
Conditional Power: 0.3	0
# of Events (Queselly) 222	~
# of Events (Overall).	
* Use the radio button to select the quantity to be comp	uted.
Recalc Close	

30% CP corresponds to $\widehat{HR} = 0.83$ at the interim analysis On the ln(HR) scale this corresponds to observing $\hat{\delta} = 0.5\delta_1$ 90% CP corresponds to $\widehat{HR} = 0.64$ at the interim analysis On the ln(HR) scale this corresponds to obtaining $\hat{\delta} = 0.88\delta_1$

Schema of Adaptive Design

Adaptive Distribution Theory

- Let δ be the mean difference of two normal distributions with common variance σ^2
- Test H_0 : $\delta = 0$ versus H_1 : $\delta > 0$ with a K-look group sequential design
- For $j = 1, \ldots K$ define:
 - b_j = level- α stopping boundaries for initial design
 - n_j = cumulative sample sizes of initial design
 - n_j^* = cumulative sample sizes after adaptation
 - $n^{(j)} = n_j n_{j-1}$, $n^{*(j)} = n_j^* n_{j-1}^*$; incremental data
 - $(\hat{\delta}^{(j)}, \hat{\delta}^{*(j)})$ = estimates based on incremental data

Cui, Hung and Wang (CHW) Test

The CHW statistic is formed by combining the incremental Wald statistics

$$Z^{*(l)} = \frac{\hat{\delta}^{*(l)}}{\mathsf{se}(\hat{\delta}^{*(l)})} = \hat{\delta}^{*(l)} \sqrt{I^{*(l)}}, \quad l = 1, 2, \dots j,$$

with the prespecified weights

$$w^{(l)} = \frac{n^{(l)}}{n_K} \quad l = 1, 2, \dots j$$

so as to form the weighted statistic

$$Z_{j,\mathsf{chw}}^* = \frac{\sqrt{w^{(1)}}Z^{*(1)} + \sqrt{w^{(2)}}Z^{*(2)} + \dots + \sqrt{w^{(j)}}Z^{*(j)}}{\sqrt{w^{(1)} + w^{(2)} + \dots + w^{(j)}}}$$

CHW Test; continued

This statistic is asymptotically normal with mean

$$E(Z_{j,\text{chw}}^{*}) = \frac{\delta \sum_{l=1}^{j} \sqrt{w^{(l)} I^{*(l)}}}{\sqrt{\sum_{l=1}^{j} w^{(l)}}}$$

and unit variance. Thus, under H_0 , $Z^*_{j,chw} \sim N(0, 1)$

• As long as the weights $w^{(1)}, w^{(2)}, \dots w^{(K)}$ are pre-specified,

$$\operatorname{corr}(Z_{j_1,\mathsf{chw}}^*, Z_{j_2,\mathsf{chw}}^*) = \sqrt{\frac{n^{(j_1)}}{n^{(j_2)}}}, \quad 1 \le j_1 < j_2 \le K$$

 It follows that, regardless of adaptive sample size change,

Repeated Confidence Intervals

We can show (Lehmacher and Wassmer, 1999) that the K repeated confidence intervals for δ are given by

$$\frac{(Z_{j,chw}^{*} \pm b_{j})\sqrt{s_{j}}}{\sum_{l=1}^{j} \sqrt{w^{(l)}I^{*(l)}}}, \ j = 1, 2, \dots K$$

where $s_j = n_{j/n_K}$ is the information fraction at look j based on the pre-specified sample sizes. Thus, if δ_0 is the true value of δ then, for all j = 1, 2, ..., K,

$$P_{\delta_{0}}\left\{\bigcap_{i=1}^{j} \left(\frac{(Z_{i,\mathsf{chw}}^{*} - b_{i})\sqrt{s_{i}}}{\sum_{l=1}^{i} \sqrt{w^{(l)}I^{*(l)}}} \le \delta_{0} \le \frac{(Z_{i,\mathsf{chw}}^{*} + b_{i})\sqrt{s_{i}}}{\sum_{l=1}^{i} \sqrt{w^{(l)}I^{*(l)}}}\right)\right\} \ge 1 - \alpha$$

Repeated p-values at each look are obtained by manipulating α such that the RCI just excludes $\delta = 0$

Conditional Power Calculation

- Sample size increase is based on CP (promising zone design)
- Suppose an interim look is taken at look L < K and the observed value of the test statistic is $Z_{L,chw}^* = z_l$. Then

$$\mathbf{CP}_{\delta}(z_L) = P_{\delta}\{\bigcup_{j=L+1}^{K} (Z_{j,\mathbf{Chw}}^* \ge b_j | z_L)\}$$

- East provides a CP calculator to perform this computation
- For the simulations, however, East ignores all intermediate looks between *L* and *K*. The approximate CP is given by

$$\mathsf{CP}_{\delta}(z_L) \approx \mathbf{1} - \Phi \left\{ b_K \sqrt{\mathbf{1} + \frac{n_L}{n_K - n_L}} - z_L \sqrt{\frac{n_L}{n_K - n_L}} - \frac{\delta \sqrt{n_K^* - n_L}}{2\sigma} \right\}$$

• Either the design δ or the estimated δ may be used for the CP calculations required by the simulations

Special Case of Survival Studies

- Let D_j (D_j^*) denote the number of events in the initial (adapted) design at look j
- Event driven trial; D_j plays the role of n_j and D_j^* plays the role of n_j^* for trial design
- Let LR_j^* be the logrank statistic based on cumulative data through look j and define

$$Z^{*(j)} = \frac{\sqrt{D_j^*} \mathbf{LR}_j^* - \sqrt{D_{j-1}^*} \mathbf{LR}_{j-1}^*}{\sqrt{D_j^* - D_{j-1}^*}}, \text{ for } j = 1, 2, \dots K$$

• Alternatively let $\hat{\delta}_j^*$ be the Cox model estimate of $-\ln(\text{HR})$, $I_j^* = [\operatorname{se}(\hat{\delta}_j^*)]^{-2}$ be the corresponding Fisher information through look j, and define

$$Z^{*(j)} = \frac{\sqrt{I_j^*}\hat{\delta}_j^* - \sqrt{I_{j-1}^*}\hat{\delta}_{j-1}^*}{\sqrt{I_j^* - I_{j-1}^*}}, \text{ for } j = 1, 2, \dots K$$

• With the above substitutions all the previous results for normal and binomial endpoints carry over to the survival setting

Adaptation Principles

- Primary driver of power is number of events
- FDA guidance recommends increase only, not decrease
- Increase events by amount needed to achieve some target conditional power, subject to a cap
- Compute sample size increase necessary to achieve the desired increase in events without undue prolongation of the trial
- Complex relationship exists between increase in events, increase in sample size and study duration. Best evaluated by simulation

Increasing Number of Events: 1

Increasing Number of Events: 2

Increasing Number of Events: 3

Adaptive Simulation Worksheet

Survival Superiority Trials: Two Sample Test - Logrank Test: Given Accrual Duration and Study Duration (Survival CHW Simulation)

Sample Size versus Study Duration Trade-Off

- Suppose you have entered the promising zone and the new number of events is D^*_{\max}
- How will you pick the new sample size, N_{\max}^* to go along with the new number of events?
 - If N^*_{max} is too small, the trial will be excessively prolonged
 - If N_{\max}^* is too large, the trial costs will be excessive while time savings might be marginal
- Obtain an accrual-duration chart by simulation and choose N^*_{\max} by inspection

Show Su	mmary for	Promising	-				
Type of A	Adaptation	Simulation		Ave. Study	Avg.	Avg.	Avg.
Increase Samp	ole Size 🛛 💌	Count	Power	Duration	Accrual	Number of	Number of
Multiplier	Total				Duration	Events	Subjects
1.30	543	3188	88.0%	52.2	31.1	500	543
1.35	564	3261	87.9%	48.2	32.3	500	564
1.40	585	3288	88.0%	45.6	33.5	500	585
1.45	606	3297	88.2%	44.0	34.7	500	606
1.50	627	3103	87.3%	42.9	35.9	500	627
1.55	648	3250	89.1%	42.2	37.1	500	648
1.60	669	3206	88.3%	41.7	38.3	500	669
1.65	690	3239	88.7%	41.4	39.5	500	690
1.70	711	3158	88.2%	41.3	40.6	500	709
1.75	732	3232	88.3%	41.3	41.2	500	719

Unnecessary to increase sample size by more than 50%

Operating Characteristics of Optimistic Design (Powered to Detect HR=0.7)

1. Simulations Under Pessimistic Scenario, HR = 0.77 (10,000 simulations)

		Powe	er	Duration (months)	SampSize		
Zone	P(Zone)	NonAdpt	Adapt	NonAdpt	Adapt	NonAdpt	Adapt	
Unf	32%	31%	31%	33	33	409	409	
Prom	32%	69%	88%	35	43	418	627	
Fav	36%	93%	93%	31	31	398	398	
Total		66%	72%	33	35	408	476	

2. Simulations Under Optimistic Scenario, HR = 0.7 (10,000 simulations)

		Pow	er	Durat	ion	SampSize		
Zone	P(Zone)	NonAdpt	Adapt	NonAdpt	Adapt	NonAdpt	Adapt	
Unf	14%	57%	57%	35	35	414	414	
Prom	26%	88%	98%	36	44	418	627	
Fav	60%	98%	98%	29	29	390	390	
Total		90%	93%	32	34	401	454	
161-		1	1		1	1		

Interim Analysis: Look 1

- Suppose first look is taken after 180 events and $\widehat{HR} = 0.81$
- Thus the corresponding Wald statistic is

 $Z^{(1)} = \hat{\delta}^{(1)} / \text{SE}(\hat{\delta}^{(1)}) = -\ln(0.81) / (2/\sqrt{180}) = 0.211 / 0.149 = 1.414$

- Enter these values into the test statistic calculator of the CHW IM worksheet. Notice that ${\rm SE}(\hat{\delta}^{(1)})$ was pre-computed

Test Statistic Calculator
Editing look #1
Input for Survival End Point (For Cumulative Events) Estimate of δ In(0.81
δ = -In(HR)
Standard Error of Estimate of 8 0.149
Output
Test Statistic 1.414
Recalc OK Cancel

Т	wo S	Sample	e Test	- Logra	ank Te	st: Give	en Acc	rual Du	ration	and Stu	udy Dur	ation (F	Plan1)	((
	Look	Cumul	Cumul	Iner	Dreepeo	Weighted	Pres	pecified Nomi	inal Critical Po	oints	Repeated 87	.50% CI	Depented				
d	#	Events	Statistic	Statistic	Weights	Statistic	Reje	ct H0	Reje	ct H1	for	HR	n_value				
25		Lycina	oundue e	Statistic	ounsuc	anatic Statistic	Weights State	weights	Statistic	Lower	Upper	Lower	Upper	Lower	Upper	p-value	
.9	1	180	1.414	1.414	0.500	1.414		2.963		-0.127	0.568	1.260	0.214				
.5	2				0.500			1.969		1.969							
2	3																
al	4																
23	5																

- Cumulative, Incremental and Weighted Statistics are equal at look 1
- Conditional power if total events are unchanged is 0.539

🚰 Conditional Power Calculator	x
_ Input	
Current Look: 1	
Current # of Events: 180	
Current Weighted Test Statistic: 1.414	
-Input/Output	
Valu <u>e</u> of HR: 0.81	0
Computed Conditional Power: 0.539	œ
# of Events (Overall): 374.4	0
* Use the radio button to select the quantity to be comp	outed.
Recalc Plot Close	

In Promising Zone; increase total events to 561

Interim Analysis: Look 2

- Suppose look 2 is taken at 561 cumulative events and $\hat{HR} = 0.8$

Cumulative: $Z_2^* = \hat{\delta}_2^* / \text{SE}(\hat{\delta}_2^*) = -\ln(0.8) / (2/\sqrt{561}) = 0.223/0.084 = 2.643$

First Statistic Calculator	? x
Editing look #2	
Input for Survival End Point (For Cumulative Events) Estimate of ଚ	0.223
δ = -In(HR)	
Standard Error of Estimate of δ	0.084
Output	
Test Statistic	2.643
Recalc OK Cancel	

Incremental:
$$Z^{*(2)} = \frac{\sqrt{D_2^*}Z_2^* - \sqrt{D_1}Z_1}{\sqrt{D_2^* - D_1}} = \frac{\sqrt{581} \times 2.643 - \sqrt{180} \times 1.414}{\sqrt{561 - 180}} = 2.235$$

Weightd: $Z_{2,\text{chw}}^* = \frac{\sqrt{w^{(1)}Z^{(1)} + \sqrt{w^{(2)}Z^{*(2)}}}{\sqrt{w^{(1)} + w^{(2)}}} = \frac{\sqrt{0.5} \times 1.414 + \sqrt{0.5} \times 2.235}{\sqrt{0.5 + 0.5}} = 2.58$

The efficacy boundary is crossed

East 5															
File * Insert *	Preferences *		🕅 📂 🔙	i 🖨 🕼	P 20 🖻		≥⊿h	<u>∫</u> ₩		IM CO	<u> [</u> <u>+</u> + TS	S S+ S	H 🔳	 이	100%
Edit • Charts •	Help *														
View * Tools *	Windows *														
Menu Comman	ds								Custom T	oolbars					
A16 -	(fs	561													
Sunvival Supariarit	v Triele: T		Somale	Toot	Logr	onk To	at: Oiu		rual Du	rotion	and St		otion (
Plan Details	y mais. I	wo s	Sample	rest	- Logia		St. Give		specified Nomi	nal Critical Pr	anto Ott	Repeated 87	20% CI		
1-Sided or 2-Sided Test	1-Sided	Look	Cumul.	Cumul.	Incr.	Prespec.	Weighted	Reje	ct H0	Reje	ct H1	for H	HR	Repeated	
Significance Level (Alpha)	0.025	#	Events	Statistic	Statistic	Weights	Statistic	Lower	Upper	Lower	Upper	Lower	Upper	p-value	
Power (1 - Beta)	0.9	1	180	1.414	1.414	0.500	1.414		2.963		-0.127	0.568	1.260	0.214	
Assigned Fraction (Treatment)	0.5	2	561	2.643	2.235	0.500	2.580		1.969		1.969	0.678	0.949	0.005	
Planned Number of Looks	2	3													
Spacing of Looks	Equal	4													
Hypothesis to be Rejected	H0 or H1 (NB)	5													
Boundary Family	SpF (Pub)	6													
Boundary to Reject H1	LD (OF)	7													
-I on-hazard Ratio	Gm (-5)	0 0													
Variance of -Loo-hazard Ratio	0.336 Null	10													
Maximum Number of Events	374	10													
Maximum Study Duration	30				E	ffect Size u	under H1: H	R = 0.714							
Nominal Critical Point Chart	(Select) 🔒														
3.00		Cum	. Wts. H	0- H0 2	963 H1-	H1+	7								
2.00	\rightarrow		1.000	1	.969	1.96	9								
1.50															
1.00							-								
0.50															
0.00							_								
-0.50 -1 i i i i i i i i i i i	50 070 080 090 10														
Error Spending Chart	(Select)						IM RCLC	hart		(Sele	ct) 🔒				
	0.10	Cum	. Wts. Al	oha Be	ta		1.40				Cu	im. Wts. Low	ver Upp	er	
0.020			0.500 0.	0015 0.0	0076		1.30 -		T			0.500 0.	.568 1.2 678 0.9	260	
0.015			1.000 0.	0200 0.1			1.10 -					1.000 0.			
0.010							0.90			T T					
	0.04	-					0.80			-					
0.005	0.02	·					0.60 -								
0.000		-					0.40								
0.00.0.10.0.20.0.30.0.40.0.50.0.60.0	70 0.80 0.90 1.00						0.00	0.20 0	40 0.60	0.80 1.00	1.20				

- Some have objected to using the weighted statistic instead of the conventional statistic for performing the hypothesis test
- Chen, DeMets and Lan (2004) have shown that if promising zone starts at $CP \ge 0.5$ it is ok to use the conventional statistic.
- Mehta and Pocock (2010) have extended this result
- Depending on event multiplier, target conditional power, and time of interim look, the promising zone can be widened as shown on the following table

CP_{min} for Various Design Options

Sample Siz	e Ratios	CP _{min} Values for Targeted				
Maximum Allowed	At Interim Look	Conditional Powers				
$(n_{\rm max}/n_2)$	(n_1/n_2)	80%	90%			
1.5	0.25	0.42	0.42			
1.5	0.5	0.41	0.41			
1.5	0.75	0.38	0.38			
2	0.25	0.37	0.37			
2	0.5	0.36	0.36			
2	0.75	0.33	0.33			
3	0.25	0.32	0.32			
3	0.5	0.31	0.31			
3	0.75	0.30	0.27			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.25	0.32	0.28			
$\infty$	0.5	0.31	0.27			
$\sim$	0.75	0.30	0.25			



29

### 100,000 Wald Simulations: seed=66649

#### Survival Superiority Trials: Two Sample Test - Logrank Test: Given Accrual Duration and Study Duration

Input Parameters								
on at Look L	1							
olier; total #)	2.00	1234						
olier, total #)	2.00	1518						
idy Duration	108.00							
# of Events	0.90							
Min CP:	0.01							
Max CP:	0.90							
mated HR								
Use Wald Stat. if CP(617) >=								
Accrual Rate After Adaptation No Change								
	rs on at Look L blier; total #) dy Duration # of Events Min CP: Max CP: mated HR CP(617) >=	rs on at Look L 1 olier; total #) 2.00 olier, total #) 2.00 dy Duration 108.00 # of Events 0.90 Min CP: 0.01 Max CP: 0.90 nated HR CP(617) >= 0.01 change ▼						

Perform	Adaptation I	rnecessary	(During	Simulations)

Output for all Trials										
	Show	All Trials								
Percentile	Study Duration	dy Number of Act tion Events Dur		Number of Subjects						
5%	32.1	617	23.9	759						
25%	33.1	617	24.0	759						
50%	34.1	617	24.0	759						
75%	50.3	1234	47.8	1518						
95%	51.4	1234	48.3	1518						
Average	39.6	842	32.9	1042						
Run	Single St	ep Res	et 1	Stop						

#### Simulation Results by Zone

	Zone	Simulations I	Rejecting H0	Simulations not Rejecting H0 Count Row %		Total Simulations		Avg. Study	Avg. Number of	Avg. Accrual	Avg. Number of
		Count	Row %			Count	Column %	20.000	Events	Duration	Subjects
۲ſ	Unfavorable + Futility	50	0.08%	59169	99.92%	59219	59.22%	33.3	617	24.0	759
	Promising: 0.010 ≤ CP < 0.900	1833	4.75%	36786	95.25%	38619	38.62%	49.6	1202	47.2	1493
۲Į	Favorable + Efficacy	799	36.96%	1363	63.04%	2162	2.16%	32.3	595	23.6	748
	All Trials	2682	2.68%	97318	97.32%	100000	100.00%	39.6	842	32.9	1042



☑

### 100,000 CDL Simulations: seed=66649

#### Survival Superiority Trials: Two Sample Test - Logrank Test: Given Accrual Duration and Study Durati

Perform Adaptation if Necessary (During Simulations)

Input Parar	]						
Ada	ion at Look L	1					
Max. Events if Adapt (	(mult	iplier; total #)	2.00	123			
Max. # of Subjects if Adapt (	(mult	tiplier, total #)	2.00	151			
Upper Limit o	n St	udy Duration	108.00				
Shape Parameter for Re-estim	ating	g # of Events	0.90				
Promising Zon	0.01						
	Max CP:						
HR Used in CP Computations	sed in CP Computations Estimated HR						
Use Wald S	0.41						
Accrual Rate After Adaptation							

Output for all Trials										
	Show	All Trials								
Percentile	Study Duration	dy Number of Acc ation Events Dura		Number of Subjects						
5%	32.1	617	23.9	759						
25%	33.1	617	24.0	759						
50%	34.1	617	24.0	759						
75%	50.3	1234	47.8	1518						
95%	51.4	1234	48.3	1518						
Average	39.6	842	32.9	1042						
Run	Single St	ep Res	et 1	Stop						

#### Simulation Results by Zone

	Zone	Simulations	Rejecting H0	Simulations not Rejecting H0		Total Simulations		Avg. Study Duration	Avg. Number of	Avg. Accrual	Avg. Number of
		Count Ro		Count	Row %	Count	Column %	20101011	Events	Duration	Subjects
+	Unfavorable + Futility	50	0.08%	59169	99.92%	59219	59.22%	33.3	617	24.0	759
	Promising: 0.010 ≤ CP < 0.900	1530	3.96%	37089	96.04%	38619	38.62%	49.6	1202	47.2	1493
+	Favorable + Efficacy	799	36.96%	1363	63.04%	2162	2.16%	32.3	595	23.6	748
	All Trials	2379	2.38%	97621	97.62%	100000	100.00%	39.6	842	32.9	1042



### 100,000 CHW Simulations: seed=66649

#### Survival Superiority Trials: Two Sample Test - Logrank Test: Given Accrual Duration and Study Durati

Input Paran											
Ada	ptat	ion at Look L	1								
Max. Events if Adapt (	mult	iplier; total #)	2.00	123							
Max. # of Subjects if Adapt (	mult	iplier, total #)	2.00	151							
Upper Limit o	n St	udy Duration	108.00								
Shape Parameter for Re-estimation	ating	g # of Events	0.90								
Promising Zon	0.01										
	0.90										
HR Used in CP Computations	Est	imated HR									
Use Wald St	0.90	I									
Accrual Rate After Adaptation	-										

Perform Adaptation if Necessary (During Simulations)

Output for all Trials										
	Show	Summary for	All Trials							
Percentile	Study Duration	Number of Events	Accrual Duration	Number of Subjects						
5%	32.1	617	23.9	759						
25%	33.1	617	24.0	759						
50%	34.1	617	24.0	759						
75%	50.3	1234	47.7	1518						
95%	51.4	1234	48.3	1518						
Average	39.5	840	32.8	1040						
Run	Single St	ep Res	et	Stop						

#### Simulation Results by Zone

	Zone	Simulations I	Rejecting H0 Simulations r H		nulations not Rejecting H0		nulations	Avg. Study	Avg. Number of	Avg. Accrual	Avg. Number of
		Count	Row %	Count Row %		Count	Column %	Duration	Events	Duration	Subjects
۲ſ	Unfavorable + Futility	50	0.08%	59148	99.92%	59198	59.20%	33.3	617	24.0	759
	Promising: 0.010 ≤ CP < 0.900	1672	4.33%	36966	95.67%	38638	38.64%	49.4	1194	46.9	1486
١	Favorable + Efficacy	800	36.97%	1364	63.03%	2164	2.16%	32.3	595	23.6	748
	All Trials	2522	2.52%	97478	97.48%	100000	100.00%	39.5	840	32.8	1040



### **Concluding Observations**

- It is believed that true HR is between 0.7 and 0.77
- Option 1: Power the trial for HR=0.77 with aggressive early stopping boundaries
  - Large up-front commitment is often an obstacle
  - Aggressive stopping boundaries require spending more alpha at the interim
  - Stopping a trial prematurely with aggressive boundaries is unlikely to alter medical practice
  - Overruns can be problematic
- Option 2: Power the trial for HR=0.7 and increase resources in promising zone
  - Requires a lower up-front commitment
  - Additional commitment only called forth if it is needed
  - Compromise design: Better than non-adaptive trial powered at HR=0.7 but not as powerful (unconditionally) as the non-adaptive design powered at HR=0.77.



### **Operational and Regulatory Issues**

- The protocol should only describe the design in general terms
- Detailed decision rules and statistical methods should be in the DMC charter
- Restrict access to the DMC charter
- Submit the design for regulatory review along with charter, simulation results and software
- Implement internal processes to prevent sponsor organization and investigators from reverse-engineering interim results
- Create an auditable DMC portal for storage of charter, decision rules and interim results



### References

1. Chen YHJ, DeMets DL, Lan KKG. Increasing the sample size when the unblinded interim result is promising. *Statistics in Medicine* 2004; 23, 1023-1038.

2. Cui L, Hung HMJ, Wang S-J. Modification of sample size in group sequential trials. *Biometrics* 1999; 55, 853-857.

3. Gao P, Ware JH, Mehta CR. Sample size re-estimation for adaptive sequential design. *J.Biopharmaceutical Statistics* 2008; 18, 1184-1196.

4. Lehmacher W, Wassmer G. Adaptive sample-size calculations in group sequential trials. *Biometrics* 1999; 55, 1286-1290.

5. Mehta CR, Pocock SJ. Adaptive increase in sample size when interim results are promising: a practical guide with examples. *Statistics in Medicine* 2010; in press.

www.cytel.com/Learn/Publications.aspx

