Design of Multi-Arm Multi-Stage Trial

JSM , Baltimore August 01, 2017

Pranab Ghosh

Cytel Inc, Cambridge MA and

Boston University, Boston MA

Acknowledgment

- This is a joint collaboration with
 - ► Cyrus Mehta, Cytel Inc, Cambridge MA.
 - ► Lingyun Liu, Cytel Inc, Cambridge MA.
 - ► Ping Gao, The Medicines Company, Parsippany NJ.
 - ► Ralph D'Agostino, Boston University, Boston MA.

Outline of Presentation

- Introduction to Multi Arm Multi-Stage(MaMs) design, illustrative example.
- Construction of Basic MAMS design problem.
- $\circ~$ Efficient boundary computation in MaMs design, numerical algorithm.
- Comparison of MAMS design against P-value combination method.

What is MAMS Design?

- Generalization of two-arm group sequential designs.
- Pair wise comparison of each arm with a common control.
- Monitor the accruing data as successive looks.
- Possible early stopping or adaptive changes.
 - ► Stop for efficacy if any arm crosses the efficacy boundary.
 - ► Stop for futility if all arms cross the futility boundary.
 - Permit dropping of losers that cross futility.
 - Modifying sample size re-estimation or patient randomization.
- Alternative to method of combining p-values (Posch et. al., 2005).
- Saves sample size, by not running separate trials to do pairwise comparison.

Properties of MAMS design

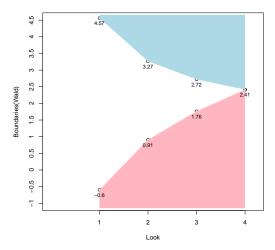
- Extended version of Dunnett's test from single look to multiple look.
- Extend two arm group sequential design to compare multiple (> 2) arms.
- Closed testing is not required, test is based on maximum statistics.
- Design will control family wise error rate (FWER).
- Dropping of arms at interim are allowed, FWER will be controlled.
- Even one arm crosses the efficacy boundary, trial can be continued with remaining arms.

Example: INHANCE Trial

- Treatment for chronic obstructive pulmonary disease (COPD).
- Three doses (150 mg, 300 mg, 500 mg) of Indacaterol vs Placebo.
- Endpoint: Week 12 change from baseline in 24 hour trough FEV1.
- Differences from placebo are between 0.14 and 0.18 liters with $\sigma = 0.5$.
- Design a 4-arm-4-look trial for 90% power at one-sided $\alpha = 0.025$.
- 1:1 allocation between each treatment arm with placebo.
- Use O'Brien-Fleming efficacy and futility boundaries.
- Require 171 patients on each arm.

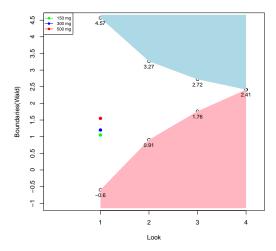
INHANCE Trial: adapted from Donohue et al, Am J Respi Crit Care, Vol 182, pp 155-162, 2010

MAMS Design Boundaries



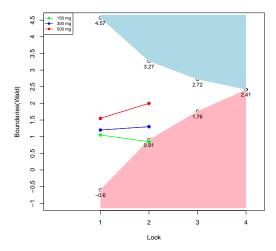
Cytel-

Monitor the Trial : Look 1



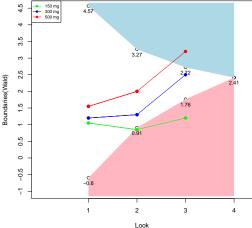
Cytel-

Monitor the Trial : Look 2



Cytel-

Monitor the Trial : Look 3



Cytel

Problem Formulation

- Multiple-Arm :
 - Pairwise comparison of D active treatments against a common placebo.
 - δ_i be the treatment effect of i^{th} arm against placebo, $i = 1, \dots D$.

 $\begin{array}{rll} H_0 & : & \delta_i \leq 0 \mbox{ for all } i \\ H_A & : & \delta_i > 0 \mbox{ for at least one } i \end{array}$

- Multiple-Stage
 - K looks at accumulating data indexed by j = 1, 2, ... K
 - Score statistics for the ith treatment at look j is $W_{ij} = \hat{\delta}_{ij}I_{ij}$.
- Construct efficacy boundaries under H₀ that provide strong control of FWER at level-α.

Type I Error, Type II Error

- Let e₁,... e_K be the efficacy boundaries and f₁,... f_K (e_K = f_K) are the non-binding futility boundaries. Stop at look j due to -
 - early efficacy if $W_{ij} \ge e_j$, for at least one i = 1, 2, ..., D.
 - early futility if $W_{ij} \leq f_j$, $\forall i = 1, 2, \dots, D$.
- Efficacy boundaries must satisfy the following criteria

$$\sum_{j=1}^{K} P_{\mathcal{H}_0} \left(\bigcap_{l=1}^{j-1} \max_i \{ W_{il} \} < e_l \text{ and } \max_i \{ W_{ij} \} \ge e_j \right) = \alpha$$

• Type II error

$$\sum_{j=1}^{K} P_{\mathcal{H}_{A}} \left(\bigcap_{l=1}^{j-1} f_{l} < \max_{i} \{ \mathcal{W}_{il} \} < e_{l} \text{ and } \max_{i} \{ \mathcal{W}_{ij} \} \leq f_{j} \right) = \beta$$

Distribution of the Score Statistics

- $\underline{W}_j = (W_{1j}, \dots, W_{Dj})$ is a multivariate discrete Brownian motion, indexed by look number j.
- W_{ij} follows multivariate normal distribution with

•
$$E(W_{ij}) = \delta_i I_{ij}$$

• $Cov(W_{i_1j}, W_{i_2j}) = \begin{cases} I_{i_1j} & \text{if } i_1 = i_2 \\ n_{0j}\sigma_0^2 \Lambda_{i_1} \Lambda_{i_2} & \text{if } i_1 \neq i_2 \end{cases}$

•
$$\Lambda_i = \left(\sigma_0^2 + \frac{\sigma_i^2}{\lambda_i}\right)^{-1}$$
 and $I_{ij} = n_{0j}\Lambda_i$

Cute

• For $j_1 < j_2$, $Cov(\underline{W}_{j_1}, \underline{W}_{j_2}) = Var(\underline{W}_{j_1})$. This implies $\underline{W}_{(j+1)} = \underline{W}_{j+1} - \underline{W}_j$ and \underline{W}_j are independent.

Complexity in Computation

 For Computing boundary crossing probability at look j, we need integrate the joint density of <u>W₁, W₂,..., W_j</u>, which will be of the form

$$P_j(b_1,\ldots,b_j) = \oint \cdots \oint f\left(\underline{w}_1,\ldots,\underline{w}_j\right) d\underline{w}_j \ldots d\underline{w}_1$$
$$\underbrace{w_1 < b_1 \ \underline{w}_j < b_j}$$

- Computing this probability requires integration of multivariate density of $(\underline{W}_1, \dots, \underline{W}_j)$ with dimension $j \times D$.
- Using any numerical quadrature method with G points on each dimension, will require $G^{j \times D}$ times evaluation of the joint density function.

Computing Step I - Scaling Score Statistics

- Scale score statistics by $\frac{1}{\sqrt{\mathcal{I}_{max}}}$, where $\mathcal{I}_{max} = n_{0K} * \Lambda_{max}$; $(\Lambda_{max} = \max_{i} \Lambda_i)$
- $\underline{U}_{j} = \frac{1}{\sqrt{I_{max}}} \underline{W}_{j} \sim N(t_{j}\vec{\eta}, t_{j}\rho).$ • $t_{j} = \frac{n_{0j}}{n_{0K}}$, information fraction at look j. • $\eta_{i} = \delta_{i} \sqrt{I_{max}} \frac{\Lambda_{i}}{\Lambda_{max}}$, drift parameter for the i^{th} treatment arm. • $\rho_{i_{1}i_{2}} = \begin{cases} \frac{\Lambda_{i_{1}}\Lambda_{i_{2}}}{\Lambda_{max}}\sigma_{0}^{2} & i_{1} \neq i_{2} \\ \frac{\Lambda_{i_{1}}}{\Lambda_{max}} & i_{1} = i_{2} \end{cases}$
- Also $\operatorname{Cov}\left(\underline{U}_{j_1}, \underline{U}_{j_2}\right) = t_{j_1}\rho, j_1 < j_2.$

Cutel

- Preserve Brownian process (independent increment) properties of the score statistics.
- Efficacy boundaries (under H_0) will not depend on sample size.

Computation Steps II: Independent Increment

- $\underline{U}_{(j)} = \underline{U}_j \underline{U}_{j-1} \sim N(t_{(j)}\eta, t_{(j)}\rho)$ and is independent of \underline{U}_{j-1} .
- Using the independent property of the Brownian process for \vec{U}_j , we can write this as integration of dimension D only, with recursive in nature.

$$P_{j} = \oint_{\underline{u}_{1} < \frac{b_{1}}{\sqrt{2} \max} \underline{u}_{(2)} < \frac{b_{2}}{\sqrt{2} \max} - \underline{u}_{1}} \oint_{\underline{u}_{(j)} < \frac{b_{j}}{\sqrt{2} \max} - \underline{u}_{1}} \underbrace{\underline{u}_{(j)} < \frac{b_{j}}{\sqrt{2} \max} - \underline{u}_{j-1}}_{\underline{u}_{j-1}} f_{\underline{U}_{(j)}}(\underline{u}_{(j)}) d\underline{u}_{(j)} \dots d\underline{u}_{(2)} d\underline{u}_{1}$$

Computation Steps III : Transformation

- Series of integral transformation, due to a suggestion by Alen Genz(1992),
 - $\frac{\underline{u}_{(j)} t_j \underline{\eta}}{\sqrt{t_{(j)}}} = C \underline{y}_j; \ \rho = CC^T;$ reduces the computation to recursive univariate normal integration.
 - ► Gaussian transformation Φ(y_{ij}) = x_{ij} to get finite integration range.

$$P_{j} = \int_{0}^{1} e_{11} \cdots \int_{0}^{1} e_{D1} \cdots \int_{0}^{1} e_{1j} \cdots \int_{0}^{1} e_{Dj} d\vec{x_{j}} \cdots d\vec{x_{1}}$$

$$e_{ik} = \Phi \left\{ \frac{1}{C_{ii}} \left[\frac{1}{t_{(k)}} \left(\frac{b_k}{\sqrt{\mathcal{I}_{\max}}} - t_k \eta_i - \sum_{m=1}^i C_{im} p_{mk-1} \right) - \sum_{m=1}^{i-1} C_{im} \Phi^{-1}(e_{mk} x_{mk}) \right] \right\}$$
$$p_{mk} = \sum_{l=1}^k \sqrt{t_{(l)}} \Phi^{-1}(e_{ml} x_{ml})$$

Computation Steps IV : Quasi-Monte Carlo

- Quasi Monte Carlo method was used, which provide a higher convergence rate than regular Monte Carlo $(O(N^{-1})$ against $O(N^{-0.5}))$.
- Also provides the **accuracy** in estimation which depends on number of sample points (N).

Speed and Accuracy of Computing Algorithm: I

	Our Algorithm			R Package ⁽ †)	
		$3 imes \sigma$ Accuracy of	Computing	Computing	
Κ	D	Probability Estimates	Time (secs)	Time (secs)	
	3	0.000075	1	2	
2	4	0.000156	1	2	
	5	0.000302	2	2	
	6	0.000421	2	2	
	3	0.000359	1	138	
3	4	0.000495	1	148	
	5	0.001042	2	156	
	6	0.000637	2	158	
(†) https://cran.r-project.org/web/packages/MAMS/index.html					

Speed and Accuracy of Computing Algorithm: II

	Our Algorithm			R Package ⁽ †)	
		$3 imes\sigma$ Accuracy of	Computing	Computing	
Κ	D	Probability Estimates	Time (secs)	Time (secs)	
	3	0.000585	1	> 8 hrs	
4	4	0.000581	2	> 8 hrs	
	5	0.001848	2	> 8 hrs	
	6	0.00097	3	> 8 hrs	
	3	0.000739	1	> 8 hrs	
5	4	0.001324	2	> 8 hrs	
	5	0.001823	2	> 8 hrs	
	6	0.000995	4	> 8 hrs	
(†) https://cran.r-project.org/web/packages/MAMS/index.html					

Comparison of MAMS and P-value Combination

- P-value Combination Method
 - Uses **closed testing** to guarantee strong control of FWER.
 - Combines the multiplicity adjusted p-values(Bonferroni, Simes, Dunnet) from the two stages with pre-specified weights and combination function.
 - Does not utilize correlation between p-values (except Dunnett test).
- MAMS Method
 - ► Boundaries are constructed under global null hypothesis.
 - ► Strong control of type-1 error is nevertheless guaranteed.
 - Boundaries constructed from distribution of the maximum statistic.
 - ► Exploits the correlation between arms for added efficiency.

Power Comparison: MAMS vs P-value Combination

- Global power of 2-stage design with 50 patients/arm

 - $\alpha_1 = 0.01$ at 50% interim analysis
 - $\delta/\sigma = 0.5$ for all comparisons

Number of	Disjunctive Power				
Arms	Bonferroni	Simes	Dunnett	MAMS	
2	0.70	0.72	0.73	0.75	
3	0.70	0.75	0.75	0.78	
4	0.69	0.76	0.76	0.80	

Concluding Remarks

- MAMS designs natural extension of 2-arm group sequential design.
- Availability of MAMS software has been the major hurdle to their acceptance in the past. Powerful new algorithms have been developed that overcome this hurdle.
- MAMS designs appear to be competitive in terms of power with P-value Combination designs.