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Outline of Presentation

◦ Introduction to Multi Arm Multi-Stage(MaMs) design, illustrative example.

◦ Construction of Basic MAMS design problem.

◦ Efficient boundary computation in MaMs design, numerical algorithm.

◦ Comparison of MAMS design against P-value combination method.
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What is MAMS Design?

• Generalization of two-arm group sequential designs.

• Pair wise comparison of each arm with a common control.

• Monitor the accruing data as successive looks.

• Possible early stopping or adaptive changes.

◮ Stop for efficacy if any arm crosses the efficacy boundary.
◮ Stop for futility if all arms cross the futility boundary.
◮ Permit dropping of losers that cross futility.
◮ Modifying sample size re-estimation or patient randomization.

• Alternative to method of combining p-values (Posch et. al., 2005).

• Saves sample size, by not running separate trials to do pairwise comparison.
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Properties of MAMS design

• Extended version of Dunnett’s test from single look to multiple look.

• Extend two arm group sequential design to compare multiple (> 2) arms.

• Closed testing is not required, test is based on maximum statistics.

• Design will control family wise error rate (FWER).

• Dropping of arms at interim are allowed, FWER will be controlled.

• Even one arm crosses the efficacy boundary, trial can be continued with
remaining arms.
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Example: INHANCE Trial

• Treatment for chronic obstructive pulmonary disease (COPD).

• Three doses (150 mg, 300 mg, 500 mg) of Indacaterol vs Placebo.

• Endpoint: Week 12 change from baseline in 24 hour trough FEV1.

• Differences from placebo are between 0.14 and 0.18 liters with σ = 0.5.

• Design a 4-arm-4-look trial for 90% power at one-sided α = 0.025.

• 1:1 allocation between each treatment arm with placebo.

• Use O’Brien-Fleming efficacy and futility boundaries.

• Require 171 patients on each arm.

INHANCE Trial: adapted from Donohue et al, Am J Respi Crit Care, Vol 182, pp 155-162, 2010
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MAMS Design Boundaries
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Monitor the Trial : Look 1
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Monitor the Trial : Look 2
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Monitor the Trial : Look 3
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Problem Formulation

• Multiple-Arm :

◮ Pairwise comparison of D active treatments against a common
placebo.

◮ δi be the treatment effect of i th arm against placebo, i = 1, . . .D.

H0 : δi ≤ 0 for all i

HA : δi > 0 for at least one i

• Multiple-Stage

◮ K looks at accumulating data indexed by j = 1, 2, ...K
◮ Score statistics for the ith treatment at look j is Wij = δ̂ij Iij .

• Construct efficacy boundaries under H0 that provide strong control of FWER
at level-α.
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Type I Error, Type II Error

• Let e1, . . . eK be the efficacy boundaries and f1, . . . fK (eK = fK ) are the

non-binding futility boundaries. Stop at look j due to -

◮ early efficacy if Wij ≥ ej , for at least one i = 1, 2, . . . ,D.
◮ early futility if Wij ≤ fj , ∀i = 1, 2, . . . ,D.

• Efficacy boundaries must satisfy the following criteria

K
∑

j=1

PH0

(

j−1
⋂

l=1

max
i
{Wil} < el and max

i
{Wij} ≥ ej

)

= α

• Type II error

K
∑

j=1

PHA

(

j−1
⋂

l=1

fl < max
i
{Wil} < el and max

i
{Wij} ≤ fj

)

= β
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Distribution of the Score Statistics

• W j = (W1j , . . . ,WDj) is a multivariate discrete Brownian motion, indexed by
look number j.

• Wij follows multivariate normal distribution with

◮ E (Wij) = δi Iij

◮ Cov(Wi1j ,Wi2j) =

{

Ii1j if i1 = i2
n0jσ

2
0Λi1Λi2 if i1 6= i2

• Λi =
(

σ2
0 +

σ
2
i

λi

)−1

and Iij = n0jΛi

• For j1 < j2, Cov(W j1
,W j2

) = Var(W j1
). This implies W (j+1) = W j+1 −W j

and W j are independent.
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Complexity in Computation

• For Computing boundary crossing probability at look j, we need integrate the
joint density of W 1,W 2, . . . ,W j , which will be of the form

Pj(b1, . . . , bj) =

∮

w1<b1

· · ·
∮

w j<bj

f
(

w 1, . . . ,w j

)

dw j . . . dw 1

• Computing this probability requires integration of multivariate density of
(W 1, . . .W j) with dimension j × D.

• Using any numerical quadrature method with G points on each dimension,
will require G j×D times evaluation of the joint density function.
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Computing Step I - Scaling Score Statistics

• Scale score statistics by 1√
Imax

, where Imax = n0K ∗ Λmax ; (Λmax = max
i
Λi )

• U j =
1√
Imax

W j ∼ N(tj~η, tjρ).

◮ tj =
n0j

n0K
, information fraction at look j.

◮ ηi = δi
√
Imax

Λi

Λmax
, drift parameter for the i th treatment arm.

◮

ρi1i2 =











Λi1Λi2

Λmax

σ2
0 i1 6= i2

Λi1

Λmax
i1 = i2

• Also Cov
(

U j1
,U j2

)

= tj1ρ, j1 < j2.

• Preserve Brownian process (independent increment) properties of the score
statistics.

• Efficacy boundaries (under H0) will not depend on sample size.
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Computation Steps II: Independent
Increment

• U(j) = U j − U j−1 ∼ N(t(j)η, t(j)ρ) and is independent of U j−1.

• Using the independent property of the Brownian process for ~Uj , we can write
this as integration of dimension D only, with recursive in nature.

Pj =

∮

u1<
b1√
Imax

fU1
(u1)

∮

u(2)<
b2√
Imax

−u1

fU (2)
(u(2)) · · ·

∮

u(j)<
bj√
Imax

−u
j−1

fU(j)
(u(j))du(j) . . . du(2)du1
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Computation Steps III : Transformation

• Series of integral transformation, due to a suggestion by Alen Genz(1992),

◮

u(j)−tjη√
t(j)

= Cy
j
; ρ = CCT ; reduces the computation to recursive

univariate normal integration.
◮ Gaussian transformation Φ(yij) = xij to get finite integration

range.

Pj =

∫ 1

0

e11 · · ·
∫ 1

0

eD1 · · ·
∫ 1

0

e1j · · ·
∫ 1

0

eDjd~xj · · · d~x1

eik = Φ

{

1

Cii

[

1

t(k)

(

bk√
Imax

− tkηi −
i
∑

m=1

Cimpmk−1

)

−
i−1
∑

m=1

CimΦ
−1(emkxmk )

]}

pmk =
k
∑

l=1

√

t(l)Φ
−1(emlxml )
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Computation Steps IV : Quasi-Monte Carlo

• Quasi Monte Carlo method was used, which provide a higher convergence
rate than regular Monte Carlo (O(N−1) against O(N−0.5)).

• Also provides the accuracy in estimation which depends on number of
sample points (N).
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Speed and Accuracy of Computing
Algorithm: I

Our Algorithm R Package(†)
3× σ Accuracy of Computing Computing

K D Probability Estimates Time (secs) Time (secs)
3 0.000075 1 2

2 4 0.000156 1 2
5 0.000302 2 2
6 0.000421 2 2
3 0.000359 1 138

3 4 0.000495 1 148
5 0.001042 2 156
6 0.000637 2 158

(†) https://cran.r-project.org/web/packages/MAMS/index.html
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Speed and Accuracy of Computing
Algorithm: II

Our Algorithm R Package(†)
3× σ Accuracy of Computing Computing

K D Probability Estimates Time (secs) Time (secs)
3 0.000585 1 > 8 hrs

4 4 0.000581 2 > 8 hrs
5 0.001848 2 > 8 hrs
6 0.00097 3 > 8 hrs
3 0.000739 1 > 8 hrs

5 4 0.001324 2 > 8 hrs
5 0.001823 2 > 8 hrs
6 0.000995 4 > 8 hrs

(†) https://cran.r-project.org/web/packages/MAMS/index.html
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Comparison of MAMS and P-value
Combination

• P-value Combination Method

◮ Uses closed testing to guarantee strong control of FWER.
◮ Combines the multiplicity adjusted p-values(Bonferroni, Simes,

Dunnet) from the two stages with pre-specified weights and
combination function.

◮ Does not utilize correlation between p-values (except Dunnett
test).

• MAMS Method

◮ Boundaries are constructed under global null hypothesis.
◮ Strong control of type-1 error is nevertheless guaranteed.
◮ Boundaries constructed from distribution of the maximum

statistic.
◮ Exploits the correlation between arms for added efficiency.
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Power Comparison: MAMS vs P-value
Combination

• Global power of 2-stage design with 50 patients/arm

◮ α = 0.025
◮ α1 = 0.01 at 50% interim analysis
◮ δ/σ = 0.5 for all comparisons

Number of Disjunctive Power
Arms Bonferroni Simes Dunnett MAMS
2 0.70 0.72 0.73 0.75
3 0.70 0.75 0.75 0.78
4 0.69 0.76 0.76 0.80
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Concluding Remarks

• MAMS designs natural extension of 2-arm group sequential design.

• Availability of MAMS software has been the major hurdle to their acceptance
in the past. Powerful new algorithms have been developed that overcome
this hurdle.

• MAMS designs appear to be competitive in terms of power with P-value
Combination designs.
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