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SUMMARY

This paper proposes a method for computing conservative confidence intervals for a group sequential test
in which an adaptive design change is made one or more times over the course of the trial. The key
idea, due to Müller and Schäfer (Biometrics 2001; 57:886–891), is that by preserving the null conditional
rejection probability of the remainder of the trial at the time of each adaptive change, the overall type I error
rate, taken unconditionally over all possible design modifications, is also preserved. We show how this
principle may be extended to construct one-sided confidence intervals by applying the idea to a sequence
of dual tests derived from the repeated confidence intervals (RCIs) proposed by Jennison and Turnbull
(J. Roy. Statist. Soc. B 1989; 51:301–361). These adaptive RCIs, such as their classical counterparts, have
the advantage that they preserve the desired coverage probability even if the pre-specified stopping rule is
over-ruled. The statistical methodology is explored by simulations and is illustrated by an application to a
clinical trial of deep brain stimulation for Parkinson’s disease. Copyright q 2007 John Wiley & Sons, Ltd.

KEY WORDS: clinical trial; conditional power; estimation in flexible design; inflation of type I error
rate; sample size re-estimation

1. INTRODUCTION

There has been a considerable amount of recent research on making data-dependent mid-course
corrections to the sample size of a clinical trial while preserving the type I error rate. Some of the
early proposals are due to Bauer and Köhne [1], Proschan and Hunsberger [2], Lehmacher and
Wassmer [3], Cui et al. [4] and Denne [5]. One of the most general approaches to the problem is
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due to Müller and Schäfer [6, 7]. Their method adds a new dimension of flexibility to an ongoing
group sequential clinical trial; it permits data-dependent changes to the spending function and the
number of interim looks, while nevertheless preserving the overall type I error rate. An important
benefit of the methodology is that while the adaptations may depend on the data observed up
to the interim analysis, the precise adaptation rule need not be pre-specified. Indeed, one may
examine all aspects of the interim data and even combine it with external data available from other
related trials or market conditions before deciding whether to adapt at all, and if so, the type of
adaptation to apply. Furthermore, if no adaptations are performed (a decision that can be based on
the interim data as well) the usual group sequential analysis is performed as pre-planned without
any modification.

The related inference problem of computing confidence intervals, point estimates and p-values
following an adaptive change in the group sequential design was not treated in [6, 7]. This limits
the applicability of the method to actual clinical trials. In this paper we show how the procedure
in [6] may be extended from hypothesis testing to parameter estimation, thereby making such
adaptive group sequential clinical trials a realistic proposition. The method shares an essential
feature of the adaptive hypothesis tests in [6, 7]; if no adaptive change is made, the classical group
sequential method of parameter estimation may be adopted. Moreover, the proposed confidence
interval is consistent with the hypothesis test in the following sense: the null hypothesis H0 :���0
is rejected if and only if the confidence interval excludes the parameter value �0.

We are aware of some other approaches to parameter estimation following an adaptive change
in sample size. Cheng and Shen [8] extended the self-designing principle of [9] to parameter
estimation based on the general distribution property of a pivot function. Lawrence and Hung [10]
used a generalization of the adaptive test statistic of [4] to produce a consistent point estimate and
a confidence interval with asymptotically correct coverage for adaptive two-stage designs. Their
approach did not encompass the group sequential setting, in which some � might be spent to
allow for early stopping. Lehmacher and Wassmer [3] extended the repeated confidence interval
(RCI) approach to adaptive designs based on the inverse normal method. Their method permits
data-driven sample size adaptations in a group sequential setting but does not accommodate other
types of data-dependent changes, such as changes to the spending function, the number of the
interim analyses or the spacing of the interim analyses. Our method specializes to the Lehmacher
and Wassmer [3] approach when only sample size changes are made. The recursive combination
tests of Brannath et al. [11] have flexibility comparable with that provided by Müller and Schäfer
[6] while providing p-values and confidence intervals in a straightforward manner. They were not,
however, intended for group sequential trials. Although, in principle, the approach of Brannath
et al. [11] could be implemented in a group sequential setting, working out the appropriate recursive
combination tests and the corresponding p-value and confidence interval would be a challenging
task. Therefore, we follow another route in this paper. Here, we apply the Müller and Schäfer
procedure to dual tests derived from the RCIs [12]. We then invert the resulting adaptive tests
so as to form the required confidence interval. The resulting adaptive RCIs, like their classical
counterparts, provide guaranteed coverage of the unknown parameter � at or above the desired
confidence level even when the pre-specified stopping rule is ignored. Inevitably, the price paid
for this flexibility is a strict conservatism of the coverage probability [13].

Our approach is applicable only to one-sided confidence intervals. In many clinical trials one-
sided hypotheses are of major interest. Two-sided confidence intervals can be obtained as the
intersection of two one-sided intervals, using the approach described in this paper. In Section 2 we
introduce the notation and describe the Müller and Schäfer procedure for adaptive group sequential
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hypothesis testing. In Section 3 we show how to extend the procedure so as to obtain confidence
intervals with correct and conservative coverage. Point estimates that are either median unbiased or
biased conservatively are discussed in Section 4. P-values are considered in Section 5. In Section 6
we evaluate the properties of these confidence intervals and point estimates by simulation over a
range of spending functions for two types of adaptive designs. The suggested approach is then
applied to an actual clinical trial in Section 7. We end with some final thoughts and conclusions
in Section 8.

2. REVIEW OF ADAPTIVE GROUP SEQUENTIAL HYPOTHESIS TESTING

Consider first the canonical group sequential test (see, for example, Jennison and Turnbull, [14],
Chapter 3). A total of N normally distributed observations, Xil , i= t or c and l=1,2, . . . ,N/2,
are generated from treatment arm t and control arm c, respectively, of a randomized clinical trial.
The population means of the two arms are �t and �c with �=�t −�c and there is a common
known variance �2. The objective is to construct a group sequential test of the null hypothesis
H0 :��0 against the one-sided alternative that �>0. To this end the data are monitored up to a
maximum of K times after observing the cumulative responses for n1,n2, . . . ,nK =N subjects.
At the j th interim analysis the data are summarized by the Wald statistic Z j = �̂ j

√
I j , where �̂ j

is the maximum likelihood estimate of � and I j ≈[se(�̂ j )]−2=n j/(4�2) is the estimate of Fisher
information. Then the sequentially computed Wald statistics {Z1, Z2, . . . , ZK } are multivariate
normal with E(Z j )=�

√
I j and Cov(Z j , Zk)=

√
I j/Ik , for all j�k=1,2, . . . ,K .

These distributional properties imply that {Z1, Z2, . . . , ZK } is a Markov sequence, which consid-
erably simplifies the generation of group sequential stopping boundaries for testing H0 (see,
for example, [15]). The stopping boundaries are typically created through the spending function
methodology of Lan and DeMets [16]. A spending function g�(t) is a monotone increasing function
defined for all 0�t�1 with g�(0)=0 and g�(1)=�, the type I error rate of the group sequential test.
The value g�(t j ) assumed by the spending function at the information fraction t j = I j/IK =n j/nK
represents the cumulative amount of type I error rate that has been utilized up to and including look
j , j =1,2, . . . ,K . The stopping boundaries, b1,b2, . . . ,bK , for a K -look, one-sided, level-� group
sequential test of H0 in which the cumulative type I error rate spent by look j is g�(t j ), are obtained
by solving the following K equations recursively: P0(Z1�b1)=g�(t1) and for j =2,3, . . . ,K ,

g�(t j−1)+P0(Z1<b1, . . . , Z j−1<b j−1, Z j�b j )=g�(t j ) (1)

Müller and Schäfer [6] introduced the possibility of making one or more adaptive changes to
the trial design within this group sequential framework through the principle of preserving the
conditional rejection probability each time an adaptive change is made. Suppose that at some look
L<K it is desired to make an adaptive change to the future course of the trial. Then one must
first compute the conditional rejection probability

�= P0

(
K⋃

j=L+1
{Z j�b j }|ZL = zL

)
(2)

Going forward, one may change various design elements of the trial, such as sample size, spending
function, number of additional interim looks and spacing of the interim looks. Müller and Schäfer
[6, 7] have shown that no matter what data-dependent changes one make at look L , the overall
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unconditional type I error rate of the entire trial, with respect to all possible trial modifications, will
remain �, provided the modified portion of the trial preserves the conditional rejection probability,
i.e. provided the null probability of rejecting H0 at some future look conditional on ZL = zL is �.

Although not necessary, it is convenient to think of the remaining portion of the trial after look L
as a new and completely independent ‘secondary’ trial in which the test statistic is initialized to zero,
the new design elements are incorporated, and the type I error rate is �. The original design up to and
including look L is then referred to as the ‘primary’ trial. We shall hereafter distinguish between
the primary and secondary trials by labelling all sample sizes, spending function values, stopping
boundaries and test statistics for the secondary trial with superscripts. In this notation the secondary
trial is monitored at the information fractions t (2)j = I (2)

j /I (2)
K (2) =n(2)

j /n(2)
K (2) , j =1,2, . . . ,K (2), and

terminated at look L(2)�K (2). The observed statistic at the time of termination is Z (2)
L(2) = z(2)

L(2) .

The null hypothesis H0:��0 is rejected if and only if z(2)
L(2)�b(2)

L(2) , where the boundaries b(2)
j

are determined from an error spending function g(2)
� (t (2)j ), j=1, . . . ,K (2), with g(2)

� (0)=0 and

g(2)
� (1)=�, such that P0(Z

(2)
1 �b(2)

1 )=g(2)
� (t (2)1 ) and for j =2,3, . . . ,K (2),

g(2)
� (t (2)j−1)+P0(Z

(2)
1 <b(2)

1 , . . . , Z (2)
j−1<b(2)

j−1, Z
(2)
j �b(2)

j )=g(2)
� (t (2)j ) (3)

It is important to note that the statistics z(2)j , j =1,2, . . . ,K (2), in the secondary trial are computed
from the responses of an independent cohort of subjects whose responses were not included
in the data of the primary trial. Indeed, the only information that is carried over from the
primary trial to the secondary trial is �. For completeness, however, we may also express the
test statistics and boundary values of the primary and secondary trials in terms of an equiva-
lent combined trial containing up to L+K (2) analyses. For the first L looks, of course, the test
statistics and boundary values of the combined trial are identical to the corresponding values of
the primary trial. The value of the test statistic at look L+ j of the combined trial is z(c)L+ j =
(zL

√
nL +z(2)j )

√
n(2)
j )/

√
nL +n(2)

j and the value of the stopping boundary at look L+ j of the

combined trial is b(c)
L+ j =(zL

√
nL +b(2)

j

√
n(2)
j )/

√
nL +n(2)

j .
It is possible to repeat the Müller and Schäfer [6] procedure more than once. A modified trial

may itself undergo further modifications at future interim looks. However, prior to each such
modification, the conditional rejection probability of continuing on without a further modification
must be computed and preserved in the modified trial.

Although we have described the problem in terms of two-sample group sequential tests for
normally distributed data with a known variance, it extends to numerous other settings including
one- and two-sample group sequential tests for normal, binomial and time-to-event response, see,
for instance, Jennison and Turnbull [14] and Schäfer and Müller [17].

3. CONSTRUCTION OF CONFIDENCE INTERVALS

3.1. No adaptive change

We start by constructing the classical Jennison and Turnbull [12] one-sided RCIs for � at looks
j =1,2, . . . ,K , assuming that there is no adaptive change in the design. Let P0(E) denote the
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probability of the event E under the null hypothesis �=0 and P�(E) denote the corresponding
probability for any generic value of �. By (1) we must have P0(

⋂K
j=1 {Z j<b j })= P�(

⋂K
j=1 {Z j −

�
√
I j<b j })=1−� from which it follows that P�(

⋂K
j=1 {�>(Z j −b j )/

√
I j })=1−�. Thus, the

entire sequence of one-sided RCIs {(� j ,∞), j =1,2, . . . ,K }, where � j =(Z j −b j )/
√
I j , contains

the unknown parameter � with probability 1−� and each individual interval in this sequence
contains � with probability greater than or equal to 1−�, i.e. each individual interval provides
conservative coverage of �.

As noted by Jennison and Turnbull [14, Section 9.3] there exists a duality between the
100×(1−�) one-sided RCI (� j ,∞) and a family of one-sided level-� hypothesis tests for Hh :
��h (−∞<h<∞). If h�� j then h cannot lie inside the confidence interval (� j ,∞) and hence we
can claim that Hh is rejected by a level-� dual test. Now, since the condition h�� j is equivalent

to z j −h
√
I j�b j , Hh is rejected by a level-� dual test if the observed test statistic z j , shifted by

h
√
I j , crosses the stopping boundary b j . The one-sided RCI (� j ,∞) therefore contains all values

of h for which Hh cannot be rejected by a level-� dual test, or equivalently, for which the shifted
statistic z j −h

√
I j is unable to cross the stopping boundary b j .

3.2. Incorporating adaptive changes

This idea of identifying all hypotheses Hh that cannot be rejected by corresponding level-� dual
tests, when combined with the Müller and Schäfer [6] principle of preserving the conditional
rejection probability, extends the construction of RCIs to the adaptive setting. Suppose that we
have performed L interim analyses and have observed the test statistics z1, z2, . . . , zL , at which
point an adaptive change is made to the future course of the study. We implement the adaptive
change in an independent secondary trial whose type I error rate, �, is computed by equation (2).
Now suppose that the secondary trial has undergone L(2)�K (2) analyses and the test statistics z(2)j ,

j =1,2, . . . , L(2), have been observed. In order to construct a RCI for � at look L(2) we must first
construct an overall level-� test of the hypothesis Hh at this interim look.

To determine the conditional rejection probability for Hh we begin shifting the statistics observed
in the primary trial to

z j (h)= z j −h
√
I j , j =1,2, . . . , L (4)

and the statistics observed in the secondary trial to

z(2)j (h)= z(2)j −h
√
I (2)
j , j =1,2, . . . , L(2) (5)

Under �=h the shifted statistics (4) are generated from a multivariate normal distribution with
E[Z j (h)]=0 and Cov[Z j1(h), Z j2(h)]=√I j1/I j2 , and the shifted statistics (5) are generated from

a multivariate normal distribution with E[Z (2)
j (h)]=0 and Cov[Z (2)

j1
(h), Z (2)

j2
(h)]=

√
I (2)
j1

/I (2)
j2
.

Therefore, it is possible to compute �(h), the conditional probability of rejecting Hh given zL(h),
by using the same canonical distribution as was used in (2) to compute �. That is,

�(h)= Ph

(
K⋃

j=L+1
{Z j (h)�b j }|ZL(h)= zL(h)

)
= P0

(
K⋃

j=L+1
{Z j�b j }|ZL = zL(h)

)
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Note that �(h) decreases with increasing h since the conditional probability of crossing the bound-
aries decreases with decreasing zL(h).

In order to apply the Müller and Schäfer [6] principle to the test of Hh the secondary trial must be
made to preserve the conditional rejection probability �(h) rather than �. This alters the cumulative
error spent at each look from g(2)

� (t (2)j ) to g(2)
�(h)(t

(2)
j ). The corresponding stopping boundaries are

also thereby altered, from b(2)
j to b(2)

j (h), j =1,2, . . . ,K (2), so as to satisfy P0(Z
(2)
1 (h)�b(2)

1 (h))=
g(2)
�(h)(t

(2)
1 ), and for j =2,3, . . . ,K (2),

g(2)
�(h)(t

(2)
j−1)+P0(Z

(2)
1 (h)<b(2)

1 (h), . . . , Z (2)
j−1(h)<b(2)

j−1(h), Z (2)
j (h)�b(2)

j (h))=g(2)
�(h)(t

(2)
j ) (6)

The hypothesis Hh will be rejected at look L(2) if and only if

z(2)
L(2) (h)�b(2)

L(2) (h) (7)

Since the secondary trial has preserved the conditional rejection probability �(h), this test of
Hh is indeed a level-� test. We may now construct a one-sided repeated 100×(1−�) per cent
confidence interval for � by identifying all values of h at which the corresponding level-� dual
tests Hh cannot be rejected. By (7) these values of h must satisfy z(2)

L(2) (h)<b(2)
L(2) (h). Therefore,

provided z(2)
L(2) (h)−b(2)

L(2) (h) decreases monotonically with increasing h, the interval (�L(2) ,∞) is
a 100×(1−�) per cent one-sided RCI for �, where �L(2) is the unique value h=�L(2) at which

z(2)
L(2) (�L(2) )=b(2)

L(2) (�L(2) ) (8)

Note that z(2)
L(2) (h)−b(2)

L(2) (h) decreases monotonically in h if b(2)
L(2) (h) increases monotonically.

This is obviously true if K (2) =1. For K (2) >1 we confine our attention to spending functions g(2)
u (t)

that are differentiable in u, and where the derivative is non-decreasing in u. This property holds,
for example, for the spending functions g(2)

u (t)=ut and g(2)
u (t)=u log{1+(e−1) t} considered

in [16, 18], the �-family g(2)
u (t)=u t� for �>0 considered in [14, 18], and the �-family [19]. For

these spending functions it is easy to verify that

g(2)
u (t)−g(2)

u (t ′)�g(2)
u′ (t)−g(2)

u′ (t ′) for all u�u′ and t�t ′ (9)

Then, since �(h)<�(h′) for any h>h′, property (9) ensures that

g(2)
�(h)(t

(2)
j )−g(2)

�(h)(t
(2)
j−1)<g(2)

�(h′)(t
(2)
j )−g(2)

�(h′)(t
(2)
j−1)

Therefore, the values, b(2)
L(2) (h) and b(2)

L(2) (h
′), that satisfy equation (6) at j = L(2) and any h>h′

must be such that b(2)
L(2) (h)>b(2)

L(2) (h
′). Instead of defining the boundaries b(2)

L(2) (h) via a family of
spending functions, we can directly use a family of boundaries which increase with decreasing
level, such as the power family [20, 21]. Note that the spending function of the primary trial need
not satisfy condition (9) since we are using here the same boundaries b j , j�k, for all h.

Remark
Although we have focused here on the construction of a lower confidence bound for the final
stage L(2) of the secondary trial, the same method can also be applied to all earlier stages. The
intersection of all these confidence bounds still has a coverage probability of at least 1−�.
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4. CONSERVATIVE POINT ESTIMATE

The lower bound of a conservative one-sided confidence interval at level 0.5 is an estimate that
exceeds the true treatment effect � with a probability of at most 0.5. Hence, the median of such an
estimate, �̃ say, is smaller than or equal to the true effect � and therefore does not exhibit a positive
median bias. It might, however, exhibit a negative median bias. That is, the use of the level 0.5
lower confidence bound as a point estimate for � will have a tendency to under-estimate the true
�. In this sense it is a conservative point estimate. We shall see that the extent of the negative bias
decreases with decreasing conservatism in early stages of the error spending function. Moreover,
if early stopping for efficacy is not an objective of the trial, we shall see that the bias disappears
completely.

Suppose that an adaptive change is made at look L of the primary trial and the trial terminates at
look L(2) of the secondary trial. We obtain a level 0.5 lower confidence bound for � by performing
a sequence of level 0.5 tests of Hh , at progressively increasing values of h, until we find the largest
h at which Hh is accepted. Specifically, first determine the conditional type I error probability �0.5
based on the new boundaries b j,0.5, j = L+1, . . . ,K . Then shift the observation zL at look L of the
primary trial to zL(h)= zL −h

√
IL . Compute the new conditional type I error probability �0.5(h)

based on zL(h) rather than on zL but use the same boundaries b j,0.5, j = L+1, . . . ,K , as before.

Define secondary trial boundaries b(2)
j,0.5(h) for all h by using the spending function g�0.5(h)(t). Shift

the data of the secondary trial from z(2)j to z(2)j (h)= z(2)j −h
√
I (2)
j . Reject Hh if z

(2)
L(2) (h)�b(2)

L(2),0.5
(h).

The conservative point estimate is the value of h at which z(2)
L(2) (h)=b(2)

L(2),0.5
(h).

5. REPEATED P-VALUES

The classical stage- j repeated p-value proposed by Jennison and Turnbull [14] for a group sequen-
tial trial is

p j =sup{0<u<1 :� j (u)<0} (10)

where � j (u) are lower level-(1−u) repeated confidence bounds which are determined using a
family of group sequential designs at levels u∈[0,1]. An analogous repeated p-value can be
obtained in an adaptive group sequential trial. At any stage of the primary trial, the repeated
p-value is just the classical repeated p-value. For the final stage L(2) of the secondary trial the
repeated p-value is given by (10), where �L(2) (u) is the adaptive lower repeated confidence bound
at level 1−u. The lower confidence bounds �L(2) (u) for levels u∈(0,1) can be obtained as in
Section 4, where the case u=0.5 is described. According to the remark in Section 3.2 we can
define similar p-values for all stages j�L(2) of the secondary trial.

6. SIMULATION RESULTS

All results in this section are based on 10 000 simulated clinical trials. The standard error of the
coverage probabilities displayed in Table I is at most 0.2 percentage points. We simulated two
different group sequential adaptive trials that were designed to test the null hypothesis �=0, where
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Table I. 10 000 simulations; 2-stage primary trial; 2-stage secondary trial.

Spn-Func True � 95 per cent Coverage ‘Half-width’ Point estimate (�̂)

LD(OF)–LD(PK) 0.15 97.7 0.150 0.127
LD(OF)–LD(PK) 0.2 98.5 0.162 0.167
LD(OF)–LD(PK) 0.25 98.8 0.182 0.210

�(−24)–�(−24) 0.15 94.8 0.135 0.150
�(−24)–�(−24) 0.2 95.2 0.137 0.199
�(−24)–�(−24) 0.25 95.2 0.140 0.249

� is the difference of means in two normally distributed populations. Both trials were designed
initially (i.e. prior to any adaptation) to detect a difference of means �=0.3 with 90 per cent
power, using a one-sided level-0.05 test, with a known standard deviation �=1. Both trials were
designed for group sequential monitoring with two equally spaced looks, one interim and one final.
The only difference between the two trials was the choice of error spending function. One of the
trials utilized the Lan-DeMets [16] error spending function g�(t)=2−2�(z�/2/

√
t). This spending

function, denoted as LD(OF), produces stopping boundaries that resemble the O’Brien–Fleming
[22] stopping boundaries. With this choice of spending function there is a reasonable chance (32.2
per cent) of crossing the corresponding stopping boundary at the interim look under the alternative
hypothesis �=0.3.

The other trial utilized a member of �-family [19] of spending function g�(t)=�(1−e−�t )/

(1−e−�) with �=−24. With this large negative value for �, the probability of crossing the stopping
boundary at the interim look, under the alternative hypothesis �=0.3, is only 0.2 per cent. Thus,
the trial mimics an adaptive two-look design in which, for all practical purposes, there is no early
stopping at look 1. The main purpose of the interim look is to make a data-dependent change to
the initial design.

In both trials the look 2 sample size was adapted after observing the data at the end of look 1.
Let n denote the total initial sample size and n∗ the total sample size after making an adaptive
sample size change at the end of look 1. For the LD(OF) design n=383, and for the �(−24)
design, n=381. The adaptation from n to n∗ was implemented, based on the observed maximum
likelihood estimate �̂ at look 1, according to the following two rules: If �̂�0 or �̂>3, then n∗ =n.
If 0< �̂�3, determine the sample size, say m, such that the conditional power evaluated at �̂ is
90 per cent, and set n∗ =max{n,min(m,1000)}. Whenever an adaptive sample size change was
implemented, the trial was extended to two additional looks, with the possibility of a different
spending function than the one used in the initial design. For the trial that started out with the
LD(OF) spending function, the two additional looks utilized the more aggressive Lan–DeMets [16]
error spending function with Pocock flavor (denoted as LD(PK)) g�(t)=� log{1+(e−1)t}. For
the trial that started out with the ultra-conservative �(−24) spending function, the two additional
looks continued to utilize the �(−24) function, thereby effectively eliminating any possibility of
early stopping.

The simulation results are summarized in Table I. Each trial was simulated a total of 10 000
times with �=0.15,0.2 and 0.25, respectively, and �=1 throughout. The LD(OF)–LD(PK) trial
results are given in rows 1, 2, 3 and the �(−24)–�(−24) trial results are given in rows 4, 5, 6.
Column 3 summarizes the percentage of the 10 000 simulations in which the lower 95 per cent
confidence bound is smaller than the true �. It is seen that the LD(OF)–LD(PK) design covers the
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true � conservatively, whereas the �(−24)–�(−24) design provides exact 95 per cent coverage up
to Monte Carlo accuracy. Column 4 summarizes the average ‘half-width’, i.e. distance of the lower
confidence bound from the true value of �. Column 5 summarizes the 50th percentile of the 10 000
point estimates, obtained as described in Section 4. It is seen that these estimates are conservatively
biased for the LD(OF)–LD(PK) design, and median unbiased for the �(−24)–�(−24) design (up
to Monte Carlo accuracy).

We did also simulate with values of delta greater than 0.25. For the gamma(−24)–gamma(−24)
design, where there is no early stopping, the results are similar to what is summarized already
in Table I. As expected, for the LD(OF)–LD(PK) design, we continued to observe increasing
conservatism with increasing values of delta until eventually (around delta=0.6) over 95 per cent
of simulations crossed the boundary at the first look and the operating characteristics of the adaptive
design resembled those of the classical group sequential design.

Our methodology is based on the asymptotic normality and correlational structure of the sequen-
tially computed Wald statistic. It is thus applicable to a wide range of response endpoints with
nuisance parameters. We have, however, not performed simulations of these more general settings
for adaptive trials.

7. DEEP BRAIN STIMULATION FOR PARKINSON’S

We shall apply our estimation procedure to a clinical trial comparing deep brain stimulation with
conventional treatment for Parkinson’s disease. This trial was also discussed by Müller and Schäfer
[6]. The objective is to determine whether deep brain stimulation can improve the quality of life as
measured by the 39-item Parkinson’s Disease Questionnaire (the PDQ-39). In order to design this
study effectively, the investigators needed to specify the improvement in PDQ-39 that they wished
to detect with good power. As they had no prior PDQ-39 data on deep brain stimulation, they
utilized data from a pallidotomy trial [23] in which an improvement of 6 points was detected. The
standard deviation, also subject to considerable uncertainty, was assumed to be 17. Let � denote
the true (unknown) improvement in PDQ-39 for the treatment arm relative to the control arm.
In the remainder of this section we shall consider various hypothetical scenarios for the design,
interim analysis and adaptation of this trial.

We first design a three-look, one-sided, level-0.05, group sequential trial to test H0 :�=0 with
90 per cent power to detect �=6 when the standard deviation is �=17. We design this trial
with the East-4 [24] software and utilize an �-spending function to generate a one-sided efficacy
boundary. The �(−4) spending function [19] will be used for this purpose. The choice �=−4
yields conservative early stopping boundaries similar to those of O’Brien and Fleming [22]. The
design calls for three equally spaced looks, after enrolling n(1)

1 =93, n(1)
2 =186 and n(1)

3 =279

subjects, respectively. The corresponding Wald stopping boundaries are b(1)
1 =2.794, b(1)

2 =2.289

and b(1)
3 =1.680.

Suppose that at the first interim analysis, when 93 subjects have been evaluated, the estimate of

� is �̂
(1) =4.5 with estimated standard deviation �̂=20. At this point it is decided to increase the

sample size since, if in truth �=4.5 and �=20, the conditional power is only about 60 per cent,
whereas we would prefer to proceed with at least 80 per cent conditional power. Any change in
the sample size (as well as other data-dependent changes) is permissible, provided the conditional
rejection probability of the remainder of the trial under the null hypothesis �=0 is preserved.
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In the present case the conditional rejection probability for the remainder of the trial is 0.1025.
Therefore, we may construct any suitable secondary trial to take over from the primary trial at the
present look, as long as the significance level of the secondary trial is �=0.1025. The real benefit
of an adaptive trial lies in the fact that all aspects of the original design can be re-visited at an
interim look. All the observed efficacy and safety data, rather than just the summary statistics �̂
and �̂, could be reviewed alongside any new external information that may also become available.
In contrast, an adaptive design that relies on a mechanical process of automatically re-computing
the new sample size as a pre-specified function of �̂ might not be the best option. For example,
Tsiatis and Mehta [25] show that once such a mechanical process is pre-specified, it is possible
to construct an alternative group sequential trial that always stops earlier, with higher probability
than the adaptive trial, if � favors the treatment arm, see also Jennison and Turnbull [26]. Suppose
then that, based on both budgetary and scientific considerations, the sponsor finally settles on
a single-look secondary trial having 80 per cent power to detect a difference �=5 with �=20,
using a one-sided test at level �=0.1025. This leads to a sample size of n(2)

1 =285 and a critical

value of b(2)
1 =1.2674. At the final look of the secondary trial, with n(2)

1 =285 subjects, we obtain

�̂
(2)
1 =4.65 and �̂(2)

1 =19.5 leading to z(2)1 =((4.65
√
285)/(2×19.5))=2.0128. Since z(2)1 exceeds

the final critical value b(2)
1 =1.2674, the null hypothesis that �=0 is rejected.

To obtain a lower confidence bound for � we observe that if we shift the data by �=1.22, then
z(2)
L(2) (1.22)=b(2)

L(2) (1.22). Thus �=1.22 is a 95 per cent lower confidence bound for �. To obtain
a point estimate for � we observe that if we set �=0.5, re-compute boundaries as described in
Section 4, and shift the data by 4.6 then z(2)

L(2) (4.6)=b(2)
L(2) (6). Thus, the conservative estimate

is �̃=4.6. Finally, the overall p-value for the adaptive trial is computed to be 0.0125, using the
repeated p-value approach described in Section 5.

8. CONCLUDING REMARKS

The conditional rejection probability principle is the foundation of the present paper. It has freed up
the possibility of making a broad range of data-dependent changes to an ongoing group sequential
trial, including sample size changes, alterations in the spending function, alterations in the number
and spacing of interim looks, and enrichment of the patient population following an interim look.
Previously work on adaptive trials in a confirmatory setting emphasized only sample size changes.
The level of flexibility offered by our approach is comparable with that of the recursive combination
tests of Brannath et al. [11], but it applies to the group sequential setting.

Our approach extends the Müller and Schäfer [6] hypothesis testing procedure to the related
problem of parameter estimation and thereby makes it possible to use their approach for confir-
matory trials. Moreover, the flexibility of the testing procedure, whereby it is not necessary to
pre-specify the precise rules for making an adaptive change, has been preserved.

The essential idea underlying parameter estimation in an adaptive setting is to extend the adaptive
hypotheses testing procedure principle for H0 so as to obtain a level-� test of Hh :��h where
h �=0. To obtain such a test we extended the 100×(1−�) per cent repeated confidence intervals
(RCIs) of Jennison and Turnbull [12] from the classical group sequential setting to the adaptive
group sequential setting. A classical group sequential RCI contains all values h for which Hh is
accepted at level �. These h’s are identified by shifting the data by h

√
I j , j =1,2, . . . ,K , until the
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shifted statistic just crosses a stopping boundary. We showed how to extend this approach to the
adaptive group sequential setting. Since the classical RCI guarantees only conservative coverage
for �, so also does the RCI of the adaptive group sequential trial. The extent of the conservatism
depends on the rate at which � is spent at the interim looks. In the extreme case where a �(−24)
spending function was utilized, the coverage was exact and the point estimate for � was median
unbiased, for all practical purposes. This might be a realistic setting for many clinical trials. Often,
there is no interest in stopping a trial early for efficacy, the purpose of the interim analyses being to
either terminate for futility or make a mid-course adaptive change. On the other hand, where early
stopping for efficacy is desirable, the simulations confirmed that the confidence bounds guarantee
conservative coverage and produce a conservative (negatively biased) point estimate for �.

The method can easily be extended to group sequential designs with futility boundaries. The
conditional rejection probabilities can be computed similarly as in Section 3.2 by applying the
corresponding rejection region to the shifted sequential test statistics. Note that the conditional
error rate is zero if the shifted test statistics cross a futility boundary at any of the preceding
stages. If using futility boundaries for the secondary trial, all parameter values where the shifted
test statistics cross the futility boundaries at any interim analysis have to be accepted.

Finally, we have confined our discussion to one-sided confidence intervals. For superiority trials,
where the parameter � of interest is the improvement that the experimental treatment offers over
the control treatment, our one-sided procedure can furnish either a guaranteed lower bound, �, or
a guaranteed upper bound �. A two-sided confidence interval may then be obtained by taking the
intersection of the corresponding two one-sided confidence intervals. It should be noted that this
approach does not preclude the possibility that the intersection might be empty. Thus, the method
might not be applicable for equivalence trials where one wishes to be assured that the magnitude
of the treatment difference lies in a given range. For non-inferiority trials, however, our one-sided
procedure can estimate the amount by which the experimental treatment is inferior to the active
control. In this setting the two-sided interval is usually not of major interest.
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