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SUMMARY

Methods for controlling the type-1 error of an adaptive group sequential trial were developed in seminal
papers by Cui, Hung and Wang [5], Lehmacher and Wassmer [6], and Miiller and Schéfer [7]. However,
corresponding solutions for the equally important and related problem of parameter estimation at the
end of the adaptive trial have not so far been completely satisfactory. In this paper a method is
provided for computing a two sided confidence interval having exact coverage, along with a point
estimate that is median unbiased, for the primary efficacy parameter in a two arm adaptive group
sequential design. The possible adaptations are not confined to sample size alterations but also include
data dependent changes in the number and spacing of interim looks and changes in the error spending
function. The procedure is based on mapping the final test statistic obtained in the modified trial
into a corresponding backward image in the original trial. This is an advance on previously available
methods, which either produced conservative coverage and no point estimates, or else provided exact
coverage for one-sided intervals only. Copyright (© 2013 John Wiley & Sons, Ltd.

Keywords: Estimation in adaptive design; exact adaptive confidence intervals; adaptive
median unbiased estimates; group sequential estimation.

1. Introduction

Group sequential designs are widely used in randomized clinical trials intended to demonstrate
the efficacy and safety of new medical compounds. In a classical two-arm group sequential trial,
key design parameters like the number and spacing of the interim looks, the corresponding
early stopping boundaries and the maximum sample size are pre-specified. They may only
be altered through a blinded analysis of the accumulating data; that is, by examining the
data pooled over both treatment arms. Possible reasons for such design alterations might
be, slow patient accrual, unanticipated variability in the data, new results from external
sources, or a combination of such factors, none of which require the data of the trial to be
unblinded. In contrast, an adaptive group sequential trial permits data dependent alterations
of the key design parameters. It is thus permissible to alter the sample size, skip or add
interim looks, alter the error spending function, even alter the inclusion/exclusion criteria of
the remainder of the trial after examining the interim data, unblinded by treatment arm. A
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recent survey was conducted by the Adaptive Design Scientific Working Group of the Drug
Information Association [1] to document the perception and use of adaptive designs in industry
and academia. Nine pharmaceutical/biotechnology companies, six CROs and one academic
institution responded to the survey. Between them they identified 51 confirmatory trials
involving sample size re-estimation, 30 of them based on an unblinded analysis of accumulating
data. Given that only 20% of the organizations contacted actually responded to the survey, it
may be conjectured that unblinded sample size re-estimation is an important recent innovation
influencing the practice of clinical trials. The primary motivation for unblinded sample size
re-estimation and related adaptive modifications is the uncertainty regarding the efficacy of
the new treatment relative to the control. Often this efficacy parameter is chosen on the basis
of limited data from small pilot studies, making it desirable to consider a mid-course correction
to the sample size at an interim analysis when a substantial amount of data are available for
inspection from the trial itself. Mehta and Pocock [2] and Mehta [3] present several case studies
of actual trials in which provision was made for such adaptive modifications.

Data dependent modifications to an ongoing trial raise operational and statistical concerns.
Operational issues, such a who may have access to the unblinded data, how such such unblinded
access could lead to operational biases, and the regulatory implications of such biases are
discussed in The Guidance for Industry on Adaptive Design for Clinical Trials published by
the Food and Drug Administration [4] and are outside the scope of this paper. The two major
statistical problems for an adaptive group sequential trial are hypothesis testing and parameter
estimation. Specifically, how can we prevent inflation of the type-1 error, and how can we obtain
valid p-values, confidence intervals and point estimates in an adaptive group sequential trial?

Cui, Hung and Wang [5], and Lehmacher and Wassmer [6] showed that the type-1 error of
an adaptive group sequential trial can be preserved by combining the independent data from
the different stages of the trial with pre-specified weights. This approach is, however, only
applicable for sample size alterations. A more general approach that permits, among other
options, changes in the sample size, the number of interim looks, the spacing of interim looks,
the error spending function and subgroup selection, was proposed by Miiller and Schéfer [7].
Their method is based on the principle of preserving the type-1 errors of the original and
altered trials, conditional on the data obtained up to the time of the adaptation.

So far no satisfactory method has been published for the related problem of parameter
estimation. Cui, Hung and Wang [5] and Miiller and Schéfer [7] did not even address this
question. Lehmacher and Wassmer [6] proposed extending Jennison and Turnbull’s [8] repeated
confidence intervals method by applying it to their inverse-normal weighted statistic. As is well
known, repeated confidence intervals do not exhaust the entire type-1 error and hence produce
conservative coverage of the efficacy parameter. Indeed the simulation results in Section 5
demonstrate that the coverage of the Lehmacher and Wassmer [6] method is far in excess
of what was requested. Mehta, Bauer, Brannath and Posch [9] also proposed an approach
based on extending Jennison and Turnbull’s [8] repeated confidence intervals. Their solution,
based on a generalization of the hypothesis testing procedure of Miiller and Schéfer [7], was
applicable to a broader class of adaptive changes than the method of Lehmacher and Wassmer
[6]. However, their approach too produces conservative coverage. Furthermore, neither of the
two proposed methods can provide a valid point estimate for the efficacy parameter. More
recently, Brannath, Mehta and Posch [10] proposed a one-sided lower confidence bound for the
efficacy parameter, based on extending the stage wise adjusted confidence intervals of Tsiatis,
Rosner and Mehta [11]. They were able to prove that their method provides exact coverage for
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the special in which the adaptive alteration occurs at the penultimate look and is followed by
the final analysis. For all other cases a formal proof of exact coverage relied on a monotonicity
assumption that they were unable to demonstrate mathematically. Nevertheless they were able
to claim near-exact coverage of the lower confidence bound, and median unbiasedness of the
point estimate through extensive simulation experiments. Brannath, Mehta and Posch [10] did
not provide a method for two-sided confidence intervals.

The present paper provides a method for obtaining median unbiased point estimates and
exact two sided confidence intervals for adaptive group sequential designs. So far as we
are aware no published inference method has these operating characteristics. Our method
generalizes the stage wise adjusted confidence intervals developed by Tsiatis, Rosner and
Mehta [11] for classical group sequential designs, and the hypothesis tests developed by
Miiller and Schéfer [7] for adaptive group sequential designs, and combines these two ideas
in a novel manner to produce what we refer to as backward image confidence intervals
(BWCI). Sections 2 is a brief review of classical group sequential inference. Section 3 describes
the Miiller and Schéfer [7] method for performing valid hypothesis tests in an adaptive
setting. The main results of this paper are presented in Section 4 where the backward
image method for computing p-values point estimates and confidence intervals is developed.
Section 5 presents extensive simulation results that demonstrate median unbiasedness and
exact coverage. Section 6 illustrates the method through a worked example of a clinical trial
of deep brain stimulation for Parkinson’s disease. This example was first provided by Miiller
and Schéfer [7]. We conclude with some final remarks in Section 7. Proofs of various technical
propositions are given in the Appendices I1.1 to I1.3.

2. Inference for the Classical Group Sequential Design

Consider a two-arm randomized clinical trial comparing a new treatment to an active control.
The treatment effect is captured by a single parameter 6 that might denote the difference of
means for two normal distributions, the difference of proportions for two binomial distributions,
the log hazard ratio for two survival distributions, or more generally, the coefficient of the
treatment effect in a regression model. The accumulating data are captured by the efficient
score statistic

W (t) = 6t

where 6 is the maximum likelihood estimate of 6 and
t = [se(0)]

is the Fisher information for 6 obtained from the available data. Since ¢ depends on unknown
parameters it is replaced, in practice, by its large sample estimate. Furthermore, as is well
known (e.g., Jennison and Turnbull, [8]), W (¢) converges in distribution to a Brownian motion
with drift 6. That is,

W(t) 2 B(t) + ot (1)
where B(t) ~ N(0,t), and for any to > t1, cov{B(t1), B(t2)} = t1.

We shall be interested in testing the null hypothesis Hyp: 8 = 0 versus the one-sided
alternative # > 0, and will assume throughout that a positive value of 6 indicates a better
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prognosis for the treatment arm relative to the control arm. The following group sequential
(1)

trial will be employed to test Hy. Analyses are planned at information times ¢; ,tél), . t(éz
with corresponding critical values cgl), cgl), . ng The trial is terminated and null hypothesis

Hj is rejected at the first information time, t;l) say, such that W(t§1)) > c§1). If W(tﬁl)) < cﬁl)
for all j = 1,2,... Ky, then Hj is retained. For a one-sided level-a test of Hy, the critical

values, cgl), cél), . c(lg, must satisfy the relationship

K1
P(JW ) =) =a (2)
i=1
where Pj(.) represents probability under the assumption that § = 6. The recursive integration
algorithm of Armitage, McPherson and Rowe [12] combined with the a-spending methodology
of Lan and DeMets [13] may be used to find the critical values, cgl), cél), .. C(IQ’ that satisfy (2).
Group sequential clinical trials of normal, binomial and time to event endpoints are important
special cases of this general formulation.
Suppose that the trial is terminated at information time tgl) with W(tgl)) = x(ll). We have
thus observed the event
I-1
) @ 1 1 1 1
A 2y = W) < n ) =) .
i=1
In order to test the null hypothesis Hs: § = § versus the one-sided alternative 6§ > § we must
identify all events that are at least as extreme as A(tgl),x(Il)) and sum their probabilities
under Hy. Based on the stagewise ordering of events (Jennison and Turnbull, [14], page 179),

an event A(tffl),xgl)) is at least as extreme as an event A(t(ll),:cgl)) if either J < I, or J =1

and xf,l) > xgl). The one-sided p-value of the observed event A(t(ll)7 mgl)) for the test of H; is

thus
I-1

£t o) = P () = 1o () = ) 3)
i=1
and Hjy is rejected at level « if and only if fg(tgl), w(ll)) < «. This is a valid level-a test of Hy

because, as proven in Appendix II.1, fg(t(Il), a:gl)) satisfies the defining property of a p-value,

P{fs(t 2ty <p} =p (4)

for any § and any p € (0,1). Note that in equation (4) we are treating (tgl), xgl)) as a random
variable that assumes different values in hypothetical repetitions of the group sequential trial.

Equation (3) shows that, for a fixed outcome (t(ll),xgl)), fg(tgl),:zrgl)) is a monotone
increasing function of §. Thus for any p € (0,1) there exists a unique §,, such that
Is, (tgl),xgl)) = p. Therefore, in hypothetical repetitions of the group sequential trial where

(tgl), xf,l)) is treated as a random variable,

Py(0 < 8,) = Po{ fo (8", 28"y < f5, (15, 20)} = Po{ o (81, 2y < p} = p .

The first equality in the above expression arises from the monotonicity of fs (tgl),xgl)) with
respect to d for any fixed (t(Il)7 scgl)). It follows that the interval (04 /2,01—qa/2) is a 100 (1—a)%
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confidence interval for . A median unbiased point estimate for @ is given by §g.5. These results,
presented initially by Tsiatis, Rosner and Mehta [11], pertain only to classical group sequential
trials. In this paper we will extend them to the adaptive setting.

3. Adaptive Alteration of Statistical Information

At any look L < Ky, with W(tf)) = m(L ), it is possible to alter the number and spacing of the
future looks based on an examination of the data already obtained. Suppose it is decided to take
K future looks, at information times tgz)’tgz)’ e t% Let 052),022)

critical values, so selected that

- (2) be corresponding

K1 K2
Pof J W) 2wy =iy = R W) = P W) ==y (5)

j=L+1 Jj=1
We will continue to monitor the accumulating data and will reject Hy at the first information
time t?) > t(L) such that W(t?)) (2) W 2 )) < 652) for all i = 1,2,... K3, then we will
retain Hy and set th) = t% Miiller and Schiéfer [7] have shown that, despite this data driven
modification of the trial, the unconditional probability that such a procedure will reject Hy
remains . Equation (5) is referred to by Miiller and Schéfer [7] as the principle of preserving
the conditional rejection probability (the CRP principle). It is based on the intuitive notion
that if the future course of a trial is altered in such a way that the type-1 error conditional
on the data observed so far remains the same for the original and altered trials, then the
unconditional type-1 error of the original and altered trials is also preserved. Note that because

W (t) has independent increments, its stochastic behaviour beyond look L depends only on J:S-})

and not on earlier realizations of W(tl(»l)). Also, it is not necessary to pre-specify Ky or the

modified information times t?), té”, e t% These modified design parameters can be chosen

after examining the data that have accumulated up to and including information time t(Ll).
The corresponding critical values c§2) céQ),. cgz in equation (5) are evaluated by recursive

integration.

The setting in which the trial design is altered at the penultimate look, L = K; — 1, with
a single future look at Ko = 1, is an important special case. It covers, for example, two-stage
designs (K = 2), still the most common class of phase 3 designs with a sample size adaptation.
It is possible to study the statistical properties of these designs in greater detail because, unlike
the general case, closed-form formulae are available for the necessary computations. Suppose

the sample size is modified at information time t( ) _q, with W (¢t} (1) )= x%i , and a single

future analysis at information time tf) is proposed. In order to test Hy at level a we must
preserve the conditional type-1 error of the altered test. This is achieved by finding the value
of cgz) that satisfies the CRP condition

1 2) 2)
Po{W(tse)) > ci W tie) 1) = w3l 1} = Po{W (1) = Wt ) =l i} (6)
We can invoke the results in Gao, Ware and Mehta [15] to obtain
RN

(2) _ K-l (1) 1) 1)
¢ = (Cry—1 = Ti—1) T Ty q | - (7)
(D D
Ki;—-1
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4. P-value, Confidence Interval and Point Estimate for 6

If the trial terminates at some information time tgl) without an adaptive alteration, the classical

p-value, confidence interval and point estimate are computed as described in Section 2. So let us

(1) < c(Ll), there is an adaptive alteration

such that there are potentially Ky future analyses at 1nf0rmat10n times th), téQ), e t% having

corresponding critical values c( ) c§2),. (2) that satisfy the CRP condition (5). Suppose the

suppose that at information time t(Ll), with W(t(Ll))

trial terminates at information time tg ) w1th observed statistic :c 1 . We will then have observed
the event

L-1 —
Al ) = W EY) < M) = 21 ﬂ W) < 0w ) = ).
i=1 i=1

In order to test the null hypothesis Hs we must compute the p-value or probability of obtaining

an event at least as extreme as A(x(Ll), t(2) ?)) under H;s. We next describe how to identify

events that are at least as extreme as A(x Ll ) , t(2) ) Consider, for instance, an alternative
event
L-1 _ -1 ~ ~ ~ _
A® 0 pa®p) = (W) < PN E) =20 I (E®)) < @ )nw (¢® ) = 2@
i=1 i=1

in which L #L, x); # x(l) t2); # t ) @), # 0(2) I#1 and 2 ; # 2 )1t is not obvious

whether A(x(l) 7 t(z) e 1) is less extreme, as extreme, or more extreme than the observed
event A(m(L ), tg ), x?)) in terms of deviations from the null hypothesis Hs? Stagewise ordering
is not directly applicable in this setting because the number, spacing and critical values of
the analysis time-points after adaptation differ between the two events. For a meaningful
comparison, we need to measure the extremeness of each event with a common yardstick. This
is achieved by transforming the event that was actually obtained in the adaptive trial into
an equivalent event that might have been obtained in the original trial had there been no

adaptation. To this end we compute (tgé), z&?) the backward image of the observed outcome

(t?) , :l?§2) ), such that

Js—1
Pé{U () 2 @ ) 2 2P’y = Pt | WD) 2 U ) = 251
1=L+1

(8)
We show in Appendix I1.2 that the backward image of any observed outcome in the adaptive
trial is unique and can easily be computed.
Equation (8) implies that the probability, given W(t%)) = a:(Ll , of obtaining an event at
least as extreme (in terms of stagewise ordering) as the event

I—1
AW E?) < nw ) =P 9)
=1

(1)) 20

after adaptation, is equal to the probability, given W (¢ x;’, of obtaining an event at
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least as extreme as the event

Js—1
N W) <cnmw ) =) (10)
i=L+1

in the original trial, under Hs. From this it follows that the two events

L—-1 _
AP 4P Py = O wEY) < dInw ) = o) ﬂ W (t?) < nw ) = 2]
=1 i=1
(11)
and
L—-1 Js—1
1 1 1 1 1 1 1 1 1 1 1
AP D Dy = N E?) < cDinw ) =211 () ) < enw ) = 25
=1 i1=L+1

(12)
are equally extreme under Hy in terms of stagewise ordering. To see this intuitively, notice that
the sequence comprising the first L outcomes of (11) is the same, in terms of stagewise ordering,
as the sequence comprising the first L outcomes of (12). Observe next that the sequence (9)
appended to the first L outcomes of (11) is just as extreme as the sequence (10) appended to
the first L outcomes of (12).

More formally, we have proven in Appendix II.3 that

L L I—1
Ps{U[W(t?))zé”w(ﬂ[mt?)) P wE?) = 1o [W(t?))zm?)}})}
=1 13

=1 =1
(13)
and
Js—1
Ps{U W) = Do w ) > 20 (14)

are equal. Now (13) is the probability under Hs of all events at least as extreme as (11),
and (14) is the probability under Hy of all events at least as extreme as (12), in terms of
stagewise ordering. (Notice that neither (13) nor (14) depends explicitly on the observed
outcome W(t(Ll)) = ( ). This is because :L‘(L) < c(Ll)7 and outcomes that have not crossed a
critical boundary at any interim analysis cannot be distinguished in the stagewise ordering.) It
follows from the equality of (13) and (14) that the two events (11) and (12) are equally likely.
We now have a method for ranking the extremeness, under Hg, of events observed after

an adaptive alteration of the trial. All that is needed is to find their backward images in the
original trial and compare them with respect to stagewise ordering. For example, if (t(jl), xffl)) is

N - N Js 7 s
the backward image of the outcome (¢(2) 7, z(?) ;) associated with the event A(Jc(l) i, 125 22 5),
then the probability, under Hy, of all events that are at least as extreme as A(:C( t(2) @) 7)
is

Js—1
1 1 1 0
P () = 1o s)) = 205
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Then A(z 1)~ t(2)— 2@ ;) is at least as extreme as A(z'", 1" 2"} in terms of stagewise
ordering if

J5 1 Js—1
Pa{U W) = DU ) = 2053 < P [ W EY) 2 cPJu ) = 281
=1

or equivalently if j(; < Js, or j5 = Js and gc(~1)j(S > x(Jls)

) t(2) (2)) obtained after the trial has undergone an

adaptive alteration can be replaced by an equivalent event A(z} (1) t(Jlé), (1))

trial, where (tfjl),xfjl)) is the backward image of (¢ (12),x§ )), such that the two events are

equally extreme in terms of stagewise ordering. This enables us to compute statistically valid
hypothesis tests and confidence intervals for 8. The one-sided p-value for the test of Hy is
computed as

We have shown that any event A(x)
in the original

Js—1
£ 20Dy = Py U > e uwEl)) > 2Py (15)

which is the probability under Hjs of all events at least as extreme as the event A(x(L ), t( ) (1))

and hence, at least as extreme as the event A(xL),t(I ),335 )) We reject Hs if and only if

fs (t(l) x(Ja)) < «. To show that thlb crlterlon results in a valid level-a test of Hs we must

prove that, for any p € (0,1), f(;( Jé a:h ) satisfies

Ps{fs(t%), 2y <pt=»p, (16)

the defining property of a p-value. This is proven in Appendix II.1.

Given a final outcome (t(2) (2)) in the adaptive trial, we compute (Jn/2,01—q/2), the
100 x (1—a)% two sided confidence interval for 6, and d¢ 5, the median unbiased point estimate
for 6 by the following procedure:

Find ¢, /2 and corresponding backward image ( ¢ 2 :CS? /2) such that

1 1
(15, %) y=ar2. (17)

f7s

/2

Next find d;_/2 and corresponding backward image (t%) ,xf,l;) ) such that
1—a/2 O1—a/2

1 e -
JcJal_a/2 (%1 /2’ ZJs,_ a/z) =l-a/2. (18)

Finally, find dg.5 and corresponding backward image (7{(]15)05 , xfjlsls) such that

Fisg, (15 al) y=05. (19)

In order for this procedure to produce a confidence interval that has exact 100 x (1 — a)%
coverage of # and a point estimate that is median unbiased it is necessary to show that the

p-value f(;(t( ) xf,é)) generated by the backward image of the observed outcome (t(lz), x(lz)) is a
monotone increasing function of ¢ for any fixed value of

(t§2)7 x?)). This is proven in Section 4.1
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for a special case. We were, however, unable to construct a mathematical proof for the general
case because, unlike the classical case discussed in Section 2, where the argument of fs(.)
does not change with §, here the backward image (t815)7 xf,lé)) is a function of §. An operational
proof of monotonicity is, however, possible. Once the two-sided interval (d4/2,01-q/2) has
been obtained one may use well-established one-dimensional search techniques (for example
the book Numerical Recipes by Press et. al., [16] provided a fast routine for initially bracketing
a minimum) to acertain if the function fy(.) increases monotonically inside this interval. This
monotonicity check should be implemented not just for the one interval that was derived from
the data actually obtained, but also for additional intervals generated by simulating the design
a large number of times over a range of values for §. If monotonicity is established for every
one of these simulated intervals and if, moreover, these intervals can be shown to cover the
underlying parameter 6 at the desired confidence level, one may conclude that the procedure
has worked accurately for the trial under consideration. In this sense the proposed approach
may be regarded as an operational proof of monotonicity for a specific trial.

In Section 5 we provide an operational proof of montonicity by the above approach for
three different adaptive group sequential designs. Each design is simulated 100,000 time,
with each of five distinct values of 6. The monotonicity check was successful in every one
of these 100,000 x 5 x 3 = 1,500,000 intervals, and furthermore median unbiasedness and
exact 100 x (1 — «)% coverage up to Monte Carlo accuracy was obtained for each value of 6
in each design. While this does not constitute a mathematical proof, it provides a practical
way to verify that the procedure produces a valid confidence interval and point estimate for
any specific adaptive clinical trial under consideration. Under the monotonicity assumption it
follows that

Py < 8ay2) = Po{fo(ty,) 25)) < fr,_, (85 a5) 0} =Polfo(ty).2f)) < a/2)} = a2,

1 1 1 1 1 1
Py(0 < 81-aj2) = Polfolty) wy)) < fuy, (85 al) Oy =Polfolty) o)) < 1-a/2)} = 1-a/2

and therefore Pp(0q/2 <0 <01_q/2) =1—a.

4.1. Adaptation at Look K1 — 1 with Ko =1

For the special case that the adaptation occurs at the penultimate look and is followed by
a single further analyis, the confidence interval based on the backward image is available in
closed form and guarantees exact coverage. The point estimate is likewise guaranteed to be

median unbiased. To see this suppose we observe ng_l at the penultimate look. After the

adaptation at the penultimate look, suppose we observe 1’52) at t2. Then the backward image
of (t:(LQ), x&z) satisfies the following equation:

P W) > 2 | wtly) ) =2l = Pw () > 2P | wl ) =2W_ 1. (20)

1—1

By the property of independent increments, the above equation can be rewritten as

PAW () —w(td) ) > ol — 2l y = Pw ) —weld) ) > 2P~y (21)

1—
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10 PING GAO, LINGYUN LIU,C CYRUS MEHTA

Note that W(t(éz) - W(tgz_l) is normally distributed with mean § (t;i — t%g_l) and variance

t;i — tgifr Therefore the backward image satisfies the following equation:

{0 4D

1 K;—1 2 1 1 1 2 1
o) = Yoo ool rald) 5 — (/A — R - - )
(2) (1)
) tKl 1
(22)

5. Simulation Experiments

We evaluated the operating characteristics of the backward image method for estimating 6 by
repeatedly simulating a number of adaptive group sequential designs. In this section we report
the results of three such simulation experiments. (Several additional simulation experiments
were performed with similar conclusions.) Each experiment involved simulating an adaptive
group sequential design with five different values 6. We simulated the adaptive group sequential
trial 100,000 with each value of 6, thereby producing 100,000 confidence intervals whose
coverage of # we then assessed. All the simulations utilized normally distributed data with
mean 6 and o = 1 (assumed known).

First Simulation Experiment. In this simulation experiment the original trial is designed
for up to four equally spaced looks with the Lan and DeMets [13] O’Brien-Fleming type error
spending function (LD(OF) error spending function). The total sample size of 480 subjects
provides slightly over 90% power to detect 6 = 0.3 with a one-sided level-0.025 group sequential
test. At look 1, with 120 subjects enrolled, the conditional power under the estimated value of 6
is evaluated and if it falls between 30% and 90%, the so called “promising zone” (see Mehta and
Pocock, [2]), the sample size is increased by the amount necessary to boost the conditional
power up to 90%, subject to a cap of 1000 subjects. The trial then proceeds with the new
sample size, up to three additional equally spaced looks, and new stopping boundaries derived
from the LD(OF) error spending function. The « error of the new stopping boundaries for
the adaptive extension is derived from equation (5) so as to preserve the unconditional type-
1 error of the trial despite the data dependent adaptation. This trial is simulated 100,000
times with a fixed value of 6. At the end of each simulation the point estimate of 8, dg 5, and
the corresponding 95% two-sided confidence interval, (d9.025, d0.975), are computed. If the trial
crosses the stopping boundary at look 1, there is no adaptation and the classical stage wise
adjusted point and interval estimates are obtained as described in Section 2. If, however, there
is a sample size adaptation at look 1, the point and interval estimates for 6 are computed
by the backward image method using equations (17), (18) and (19), respectively. Simulation
results for § = —0.15,0,0.15,0.3 and 0.45 are presented in Table I. Column 1 contains the
true value of € that was used in the simulations. Column 2 contains the median of the 100,000
do.5 estimates and demonstrates that dg 5 is indeed a median unbiased point estimate for 6.
Column 3 contains the proportion of the 100,000 confidence intervals that contain the true
value of 6. These intervals demonstrate 95% coverage up to Monte Carlo accuracy. Columns 4
and 5 display the proportion of intervals that exclude the true value of 6 from below and above
respectively.

Second Simulation Experiment. In this simulation experiment the original trial is
designed for up to three equally spaced looks with the LD(OF) error spending function. The
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total sample size of 390 subjects provides about 90% power to detect § = 0.3 with a one-sided
level-0.05 group sequential test. If the trial does not cross an early stopping boundary at look 1
or look 2, then at look 2, with 240 subjects enrolled, the conditional power under the estimated
value of € is evaluated and if it falls in the promising zone, here specified to between 20% and
90%, the sample size is increased by the amount necessary to boost the conditional power up
to 90%, subject to a cap of 780 subjects. The trial then proceeds with the new sample size
for up to three additional equally spaced looks with new stopping boundaries derived from
the Lan and DeMets [13] Pocock type error spending function (the LD(PK) error spending
function). This trial was simulated 100,000 times with different values of 6. The median of the
100,000 point estimates for § and the coverage proportion of the corresponding 90% confidence
intervals for 6 are reported in Table II. It is seen that the point estimates are median unbiased
and the confidence intervals have exact 90% coverage up to Monte Carlo accuracy.

Third Simulation Experiment — Comparison with Lehmacher and Wassmer [6].
An alternative two-sided confidence interval was proposed by Lehmacher and Wassmer [6]
based on extending the repeated confidence intervals of Jennison and Turnbull [8]. Tt is well
known that these repeated confidence intervals provide conservative coverage for classical group
sequential designs because of the possibility that the trial might stop early and not exhaust all
the available «. It would therefore be instructive to assess the extent to which these repeated
confidence intervals are conservative in the adaptive setting. Accordingly we created a design
with three equally spaced looks derived from the LD(OF) spending function and a planned
adaptation at the end of look 1. The total sample size of 480 subjects has 90.44% power to
detect # = 0.3 with a one sided test operating at significance level « = 0.025. If the trial
does not cross the early stopping boundary at look 1 then, with 160 subjects enrolled, the
conditional power under the estimated value of 8 is evaluated and if it falls in the promising
zone, here specified to between 30% and 90.44%, the sample size is increased by the amount
necessary to boost the conditional power up to 90%, subject to a cap of 960 subjects. The trial
then proceeds with the new sample size for up to two additional equally spaced looks with
new stopping boundaries derived from the LD(OF) error spending function. This trial was
simulated 100,000 times with different underlying values of 8. Table III compares the actual
coverage of # by 100,000 95% confidence intervals obtained by the backward image method
(BWCI) and the repeated confidence intervals method (RCI). The median of the 100,000
point estimates generated by the BWCI method is also reported. No corresponding method
for obtaining a point estimate from the RCI method was proposed by Lehmacher and Wassmer
[6] hence none is reported.

As expected the BWCI method produces median unbiased point estimates and 95%
confidence intervals with exact coverage up to Monte Carlo accuracy. On the other hand,
the RCI method does not provide valid point estimates and produces confidence intervals with
increasingly conservative coverage as 6 increases. The reason for the increase in conservatism
is that as 6 increases, the probability of stopping early, and hence of not exhausting the entire
« increases.

It is also informative to examine the extent of the one sided coverage. This is shown in
Table IV. The BWCI interval excludes the true value for § symmetrically from below and above,
whereas the RCI method is both extremely asymmetric as well as extremely conservative.
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6. Deep Brain Stimulation for Parkinson’s Disease

We illustrate our estimation methods with a clinical trial of Parkinson’s disease. This example
was first introduced by Miiller and Schéfer [7] to illustrate their method for adaptive sample
size re-estimation, and was subsequently used by Brannath, Mehta and Posch [10] to obtain
a one sided lower confidence bound for the treatment effect. Patients were randomized to
either the experimental arm (deep brain stimulation) or the control arm (standard of care) in
equal proportions. The primary endpoint was the quality of life as measured by the 39-item
Parkinson’s Disease Questionnaire (the PDQ-39). The investigators wished to design the trial
to have 90% power to detect an improvement of # = 6 points in PDQ-39 with a one-sided
level-0.05 test of significance. The standard deviation was assumed to be ¢ = 17. Since the
actual conduct of this trial has not been reported, all the design and monitoring assumptions in
the remainder of this section are hypothetical and are used mainly to illustrate the estimation
procedure.

The trial is designed initially with a maximum sample size of 282 subjects and up to three
equally spaced analyses using stopping boundaries derived from the y(—4) error spending
function proposed by Hwang, Shih, and DeCani [17]. Such a design would call for monitoring

the data after enrolling n = 94, (1) = 188, and n(l) = 282 subjects respectively. The

corresponding stopping boundaries for the Wald statistic, Z(n =0;\/n / (207), i =1,2,3,

are bgl) = 2.794, b21) = 2.289, and b3 = 1.680. It is convenient to use the Wald statistic
rather than the score statistic for this example since it has a more familiar interpretation as a
standardized treatment effect. Also most software packages monitor data on the Wald scale.

The two statistics are linked by the relationship W(tgj)) = ngl)Z(ngj))/2a.

Suppose that at the first interim analysis, when 94 subjects have been evaluated, the
estimate of 0 is 0() = 4.5 with estimated standard deviation & = 20 so that Zfl) = 1.091.
At this point it is decided to increase the sample size since, if in truth 6 = 4.5 and o = 20,
the conditional power is only about 60%, whereas we would prefer to proceed with at least
80% conditional power. It is permissible to use any decision rule to increase the sample size
for the remainder of the trial. However, in order to protect the type-1 error in the face of a
data dependant sample size alteration, we must preserve the conditional type-1 error of the
original and adapted trials as depicted by equation (5). The conditional type-1 error of the
original design is

PO{U "y > bz = 1.091]} = 0.1033

Therefore 0.1033 is the amount of type-1 error permissible for the adaptive extension of the
trial conditional on Z{l) = 1.0901. Now it is convenient for design and monitoring purposes
to think of this adaptive extension as a separate secondary trial with an unconditional type-1
error of 0.1033. This follows from the independent increments structure of the score statistic.
One can then use standard group sequential software to design the secondary trial with a
type-1 error of 0.1033. After a thorough examination of all available efficacy and safety data
it is decided to enroll 300 subjects to the secondary trial, thereby increasing the total sample
size of the combined trial by 40% — from 282 subjects to 394 subjects. It is further decided to

monitor the secondary trial up to three times at n(2) = 100, néz) = 200 and ngz) = 300. The
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corresponding stopping boundaries must satisfy the CRP requirement
3
P{JIZ(n® > b} = 0.1033 , (23)
i=1

in order for the adaptive procedure to preserve the unconditional type-1 error at level 0.05.
It is decided to generate stopping boundaries that satisfy (23) with the v(—2) error spending

function. Thereby we obtain bﬁz) = 2.162, bg2) = 1.781 and bgz) = 1.351. Such a design has 84%
power to reject Hy if # = 4.5 and o = 17.

Suppose that the secondary trial proceeds to the second look after the recruitment of
n(22) = 200 subjects and a treatment effect of 3&2) = 6.6 and a standard deviation of &éz) =195
are obtained. This leads to 252) = (6.64/200) /(2 x 19.5)) = 2.393. Since 252) exceeds the critical

value bg) = 1.781, the trial is stopped with rejection of the null hypothesis § = 0. Applying
the backward image estimation method discussed in Sections 4 the two sided 90% confidence
interval for 0 is (1.43237,9.5224) and the median unbiased estimate is 5.53591.

It is instructive to compare these estimates with those produced by the alternative
approaches of Mehta, Brannath, Bauer and Posch [9], Brannath, Mehta and Posch [10]. These
results are tabulated below.

7. Concluding Remarks

We have presented a new method for computing confidence intervals and point estimates
for an adaptive group sequential trial. The confidence intervals are shown to produce exact
coverage and the point estimates are median unbiased. These results close an important gap
that previously existed for inference on adaptive group sequential designs. Hypothesis tests
that control the type-1 error have been available for over a decade (Cui, Hung and Wang
[5]); Lehmacher and Wassmer [6]; Miiller and Schéfer [7]). The development of procedures to
produce valid confidence intervals and point estimates proved to be much more challenging.
The first methods to guarantee two-sided coverage (Lehmacher and Wassmer [6]; Mehta,
Bauer, Posch and Brannath [9]) were shown to be conservative and did not produce valid
point estimates. Subsequently Brannath, Mehta and Posch [10] proposed a procedure that
does produce exact coverage and valid point estimates. However, it only produces one-sided
intervals. Like the procedure presented here, the method of Brannath, Mehta and Posch [10]
depends for its validity on a monotonicity property. This property was difficult to verify in
a one sided setting because one end of the interval extends to infinity. In contrast the two
sided interval discussed here provides a bounded region within which it is possible to verify
monotonicty with standard search procedures. This has enabled us to provide an operational
proof that the intervals have exact coverage and the point estimates are median unbiased.
The backward image method can be generalized to handle multiple adaptations. Suppose the

) (@)

original trial is modified N — 1 times, resulting in interim analyses at time points tgi <ty <

e < tg?i, 1 =1,2,... N—1, with modifications occuring at the observations W(t(;:)> (LT)),
(N)

m=1,2,..., N—1, and with final termination at W(ty(\g)) = Z; (v, Then for any specific value

N-1 N-1 N—2 N—2 1 1
S(N—1)> ) wS(N—1)> ), (tE;<N—z)) ) xf;(zv—z)> )y (tf]()l) ) xf]()n )

)=z

of § = §, the successive backward images (¢
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can be obtained, leading to the stage wise adjusted p-value

JW 1
Fs(tsm,zsm) = Psf U () > U W (tm) = 20}

where, for notational convenience, we have suppressed the dependence of ty),xy) on §. The
confidence interval and median unbiased estimate can now be obtained in the usual way. The
details of this generalization will be worked out and presented in a future paper.

Although the method was discussed in terms of one sided designs, the same approach can
be applied directly to a two-sided design as long as one specifies the direction of interest
for the alternative hypothesis. Also the same approach can be applied to a one sided design
with a non-binding futility boundary. The entire development in this paper was expressed
in terms of score statistics and so is applicable to all types of efficacy endpoints including
normal, binomial and survival endpoint and model-based endpoints derived from contrasts of
regression parameters and estimated by maximum likelihood methods.
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APPENDIX
II. Appendix

II.1. Distribution of f(;(t(l) x(J?)

Suppose the treatment parameter 6 has the value §, and let (tf,ls), (1))

at the end of the trial. If the trial has terminated after an adaptation, (tgé), (1)) is the backward
image of the final test statistic that was obtained in the modified trial. Otherw1se it is the actual

test statistic observed at termination. In hypothetical repetitions of the trial, (¢ f]), a:fjl)) is a

random variable. We wish to show that Pg{fg(tgl(;), Jc(}é)) < p} =p for any p € (0,1).

Case 1: An adaptation is planned at a fixed look L.
Here L may be any look between 1 and K. If the event NZ7! [W(tgl)) < cgl)] occurs, the trial
will undergo an adaptive modification at look L. Otherwise the trial terminates without any

modification. Thus the choice L = K; corresponds to having planned not to modify the trial
at all. Let

denote the test statistic

Pg{U W) > M} =a.

For a given p find L* such that ap+«_15 < p < ar« 5. Then find the unique x(Ll*) such that

L*-1

Py U V) > MU ) > M)y =p .

First consider the case where L* < L. Because of the stagewise ordering, the event
g g,
f(;(t(l) leé)) < p occurs if and only if the trial terminates without undergoing any modification

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013; 00:1-1
Prepared using simauth.cls



ADAPTIVE INCREASE IN SAMPLE SIZE WHEN INTERIM RESULTS ARE PROMISING 15

at look Js < L*, or at look Js = L* with xf,lé) > x(Ll) That is, if and only if the event

L*—1
U @) > Vo mwel?) > 28
=1
occurs. Thus
L*—1
1 1 1 1
Ps{f5(t),2)) < p} = Py{ U )=o) > 2 =p.

Next consider the case where L* > L. The event fs (t(1 x(J{;)) < p occurs if and only if one
of these two events occurs; (a) the trial terminates Wlthout undergoing any modification at
look Js < L, or (b) the trial undergoes a modification at look L and the backward image,
(t(l) xf}b is such that either Js < L* or J; = L* and xf,la) > x(Ll) That is, if and only if the
event

{O[W(t?))zé”} {{ﬂ W) v”]}m{LUl[WuE“)Zci”lu[vv(t;)w <”]}}.

i=1 i=L+1
(24)
occurs. Now the event (24) is the same as the event
L*—1
U ) z Vo) = o1
i=1
Therefore, once again,
Pa(slt,a0) < = Po{ U W) 2 e 0 W (A2) 2 520} = p

i=1

Case 2: An adaptation is planned at a random look L.
In this case

Ps{fs(t%),25)) < p} = ZR;{J% W ey <plLyP(L)=p> PIL)=p.

11.2. Uniqueness of the Backward Image

(2) 7))

The backward image (tglé),xsla)) of the observed outcome (t; satisfies the following

equation
Js—1
2 2) 2 oeh 1 1 1 1
Py U (7)) = P ) = 2P} = B | @) = o) > 25
i=L+1
(25)
Let’s denote the left hand side of (25) by a*(9), i.e. ,
I-1
2 2 2 2 1
8) = P{J W () = 1o w(tf?) = «f)|af)}
i=1
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Also let’s define a;(0) as

J
0 =Pf{ |J W)= cMail} (26)
i=L+1

Let ar(d) = P{W(t5),) > +oolri’} = 0 and ar, 41 = P{UZ, ] W) > V] U
W(ti) > —oc]lay) =1

Note that 0 = ar(d) < ar4+1(0) < ... < ak,(0) < ag,+1(d) which implies that there must
exist a unique Js with L 4+ 1 < J; < K7 + 1 such that ay,—1(d) < a*(8) < ay,. Then the
backward image must satisfy the following equation

Js—1
P{ | W) > cPTomw ) > 25120} = a7(0) . (27)
i=L+1

I1.3. Equivalence of Equations (13) and (14)

Equation (13) can be written as

Ps{U W) 2 ") }+P5{{ﬂ ) <”}m{u zi’]u[W(t&”»ﬁ”]}}

(28)
and equation (14) can be written as
Js—1
Pa{U w(t) > eV} + P {{ﬂ W) <" {U e = o) > xfﬁj]}} .
i=1
(29)

The first term of these two equations is the same. The second term of (28) can be factored as:

(1) (1) M
[ Ca (1)
/ p(O;zﬁl);O;tgl))dxgl)/ p(xgl);xél);tgl);tél))dxél)'--/ sl 5t

Pa{U W) > 1 W) > e e (30)

where p(z 51)1, 51),t§1)1,t(1)) is the probability of a transition from the score W (t;~

+D ) = x(‘l)l
i
to the score W(t; (1 )) = xil). Similarly the second term of (29) can be factored as:

(1) (1) M
[ Ca (1)
/ p(O;xﬁl);O;tgl))dafgl)/ p(xil);xél);tﬁl);tél))dxél)---/ i) st )

Js—1
Ps{ | ) > Mo l)) > 22 1aat) (31)
i=L+1

Therefore, by (8), equations (30) and (31) yield the same probability.
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Table I. Results from 100,000 simulations of a 4-look LD(OF) GSD with adaptation at look 1 to a
3-look LD(OF) GSD, demonstrating that the point estimate is median unbiased and the two-sided
95% confidence intervals provide exact coverage of the true value of 6 up to Monte Carlo accuracy

True value | Median of 100,000 | Proportion intervals | Proportion of intervals that exclude 6
of 6 point estimates containing 6 from below from above
-0.15 -0.14971 0.94893 0.02568 0.02539
0.0 0.000363 0.94976 0.02486 0.02538
0.15 0.149574 0.94939 0.02484 0.02577
0.3 0.30028 0.95111 0.02442 0.02447
0.45 0.44996 0.95017 0.02489 0.02494

Table II. Results from 100,000 simulations of a 3-look LD(OF) GSD with adaptation at look 2 to a
3-look LD(PK) GSD demonstrating that the point estimate is median unbiased and the two-sided
90% confidence intervals provide exact coverage of the true value of § up to Monte Carlo accuracy

True value | Median of 100,000 | Proportion intervals | Proportion of intervals that exclude 6
of 0 point estimates containing 6 from below from above
-0.15 -0.14972 0.90007 0.05022 0.04971
0.0 0.00027 0.90073 0.04920 0.05007
0.15 0.14986 0.89866 0.04955 0.05179
0.3 0.2999 0.90087 0.04940 0.04973
0.45 0.44963 0.89929 0.05083 0.04988

Table III. Comparison of the coverage 100,000 simulated 95% confidence intervals generated by the
BWCI and RCI methods. The underlying design is a 3-look LD(OF) GSD with adaptation at look 1
to a 2-look LD(OF) GSD.

True value || Median of 100,000 Point Estimates Actual Coverage of 95% Cls
of 6 BWCI Method RCI Method BWCI Method | RCI Method
-0.15 -0.15027 NA 0.95062 0.95771

0.0 0.000118 NA 0.95014 0.95213
0.15 0.150858 NA 0.95016 0.95017
0.3 0.300286 NA 0.95062 0.97597
0.45 0.449971 NA 0.94936 0.9875
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Table IV. Comparing the BWCI and RCI methods in terms of the probability that the lower and
upper bounds, respectively, of a 95% confidence interval will exclude §. The underlying design, a 3-
look LD(OF) GSD with adaptation at look 1 to a 2-look LD(OF) GSD, is simulated 100,000 times

True value Probability of Low CL > 6 Probability of Up CL < 6
of 0 BWCI Method | RCI Method || BWCI Method | RCI Method
-0.15 0.02505 0.01905 0.02529 0.02324

0.0 0.02462 0.02448 0.02524 0.02339
0.15 0.02473 0.02585 0.02511 0.02238
0.3 0.02411 0.00654 0.02527 0.01749
0.45 0.02470 0.00075 0.02594 0.01050

Table V. Comparison of estimates generated by different methods.

Method Low CL | Up CL | Estimate
BWCI 1.43237 | 9.5224 | 5.53591
Mehta 2008 1.191284 NA 4.314697
Brannath 2009 1.43224 NA 5.53607
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