OPTIMIZING ADAPTIVE DESIGN FOR PHASE 2 DOSE FINDING TRIALS INCORPORATING LONG-TERM SUCCESS AND FINANCIAL CONSIDERATIONS

Jingjing Gao1, Narinder Nangia2, Jim Bolognese3, Jaydeep Bhattacharyya3, Nitin Patel3

1Abbvie Inc., North Chicago, IL US
2Former Abbvie Inc.
3Cytel Inc., Cambridge, MA US

August 9, 2015
Disclosure

• The design, study conduct, analysis, and financial support of the analysis were provided by AbbVie. AbbVie participated in the interpretation of data, writing, review, and approval of the content.

• Jingjing Gao is an employee of AbbVie, Inc.

• Narinder Nangia was an employee of AbbVie, Inc. when this research was conducted and was not compensated for the development of this presentation.

• Jim Bolognese, Jaydeep Bhattacharyya, and Nitin Patel are employees of Cytel, Inc. and were not compensated for the development of this presentation.
Outline

• Introduction

• Designing a Dosing-finding Phase 2 Trial with a Case Study

• Simulation Results

• Conclusion and Discussion
Introduction (1)

Objectives of Phase 2 Dose-finding Trials

– Select the optimal dose(s) to bring forward to Phase 3 trial(s) that is

• Efficacious

• Safe/Tolerable

• Profitable
Dose Selection Approaches – Definition of Optimality

• Focused on **efficacy**
 – Optimal dose = Minimum Effective Dose (MED)
 – Safety is evaluated separately

• Focused on **safety**
 – Optimal dose = Maximum Nontoxic Dose (MND)
 – Efficacy is evaluated separately

• Focused on **tolerability**
 – Optimal dose = Maximum Tolerated Dose (MTD)
 – Efficacy is evaluated separately

• **Financial consideration** is not statisticians' responsibility, but commercial department’s. And it is done independently.
Introduction (3)

Changing the way to evaluate optimality

– Program-level optimization

Designing a dose-finding Phase 2 trial taking into consideration

• Efficacy
• Safety
• Cost-effectiveness!
Introduction (4)

- To incorporate evaluation of efficacy and safety
 - Clinically Significant Minimum Utility (CSMU) for Both Efficacy and Safety

- To incorporate economic factors
 - Net Revenue and Net Present Value (NPV)
Established Work

Patel and Ankolekar (2007) introduced a Bayesian approach to incorporate economic factors in sample size determination and design for clinical trials and portfolio of drugs.

Burman et al. (2007) proposed a decision analytic approach to calculate the sample size from a perspective of maximizing company profits.

Mehta and Patel (2006) used net revenue and NPV for sample size re-estimation in confirmatory trials.

Patel et al. (2012)

- expanded the NPV concept to design a phase 2 trial choosing a dose selection method and planning future phase 3 trials;
- proposed traditional fixed sample size design to optimize expected net present value of the product.
Fixed-arm Design vs. Adaptive Design

Types of Phase 2 Trials in terms of Allocation of Treatment

• Fixed-arm design:
 o Doses are fixed throughout treatment period.
 o Treatment arms are parallel.
 o Randomization pre-specified and fixed.

• Adaptive design:
 o Doses can be up or down titrated.
 o Treatment arms could be dropped.
 o Randomization ratios could be modified.

Extending Patel et al.’s work by incorporating NPV with adaptive design.
Objective

Benefits of an Adaptive Design:

• Reduced time to NDA using totality of data in characterizing dose-response
• Smaller average sample size
• Improved estimate of probability of success in Phase 3 trials
• Increase in expected net present value (ENPV)?

Objective:

✓ Evaluate ENPV for adaptive design versus fixed-arm design in dose-response studies
DESIGNING A COST-EFFECTIVE DOSE-FINDING PHASE 2 TRIAL WITH ADAPTIVE DESIGN
Designing a Cost-effective Dose-finding Phase 2 Trial with Adaptive Design

Key Concepts of a Cost-effective Adaptive Design

Incorporating evaluation of efficacy and safety

• Dose-Response Characterization for Efficacy
• Longitudinal Model to Predict yet to be Observed Efficacy Data
• Safety Evaluation
• Response-adaptive Randomization through Utility Function incorporating Efficacy and Safety/Tolerability
• Stopping for Futility and Success based on CSMU

Incorporating economic factors

• ENPV
Case Study – Design

Design: Multicenter, double-blind, placebo and active controlled, fixed-arm or adaptive design

Population: Adult subjects with diabetic peripheral neuropathic pain

Primary Efficacy Variable: Weekly Mean of Average Pain Over 24 hours

Duration: 12 weeks

Treatment Groups:

- Placebo
- Active comparator
- ED 6mg, 9mg, 12mg, 15mg, 18mg

Size: Max. SS 400

Minimal Clinically Significant Difference (CSD): 0.8 (Relative to Placebo)
Case Study — Adaptive Randomization and Monitoring

- **Adaptive Randomization:**
 - Fixed rate at 20% for Placebo and Active Comparator.
 - Following the burn-in period, subjects will be allocated to the 5 doses of ED using information sampling method to maximize the reduction in variance expected from adding one more subject to the dose.

- **Interim Monitoring:**
 - Trial can be stopped early for futility or success.
 - Begin after 200 patients have been accrued.
 - Adaptive randomization probabilities will be updated every two weeks and monitored by Data Monitoring Committee.
Designing a Cost-effective Dose-finding Phase 2 Trial with Adaptive Design – Dose-response Model for Efficacy

Dose-Response Model for Efficacy

• Normal Dynamic Linear Model (NDLM)

• A flexible and robust model for capturing non-monotonic curves.

Longitudinal Model for Efficacy

• Design the trial with multiple visits instead of a single visit.

• Enable final observations to be imputed for those subjects that only have intermediate responses.

• Simple linear regression model is used to accommodate the correlation between final observations and intermediate responses.
Designing a Cost-effective Dose-finding Phase 2 Trial with Adaptive Design – Efficacy Response Scenarios (1)

- To evaluate how the design performs, we consider different efficacy response scenarios.

<table>
<thead>
<tr>
<th>Efficacy Response</th>
<th>Pbo</th>
<th>6 mg</th>
<th>9 mg</th>
<th>12 mg</th>
<th>15 mg</th>
<th>18 mg</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Signal</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>2.8</td>
</tr>
<tr>
<td>12 Level Off</td>
<td>1.8</td>
<td>1.9</td>
<td>2.5</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>2.8</td>
</tr>
<tr>
<td>12 Drug</td>
<td>1.8</td>
<td>1.9</td>
<td>2.1</td>
<td>3.4</td>
<td>3</td>
<td>2.5</td>
<td>2.8</td>
</tr>
<tr>
<td>9 Level Off</td>
<td>1.8</td>
<td>2</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td>9 Level Slow</td>
<td>1.8</td>
<td>2</td>
<td>2.9</td>
<td>2.9</td>
<td>3</td>
<td>3</td>
<td>2.8</td>
</tr>
<tr>
<td>9 Drug</td>
<td>1.8</td>
<td>2</td>
<td>3.2</td>
<td>2.6</td>
<td>2.7</td>
<td>2.7</td>
<td>2.8</td>
</tr>
<tr>
<td>15 Drug</td>
<td>1.8</td>
<td>1.9</td>
<td>2.3</td>
<td>2.5</td>
<td>3.2</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>18 Drug</td>
<td>1.8</td>
<td>1.9</td>
<td>2.3</td>
<td>2.5</td>
<td>2.7</td>
<td>3.2</td>
<td>2.8</td>
</tr>
<tr>
<td>18 Super</td>
<td>1.8</td>
<td>2</td>
<td>2.5</td>
<td>2.8</td>
<td>3.2</td>
<td>3.6</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Efficacy Response Scenarios
Designing a Cost-effective Dose-finding Phase 2 Trial with Adaptive Design – Efficacy Response Scenarios (2)
Designing a Cost-effective Dose-finding Phase 2 Trial with Adaptive Design – Safety Evaluation

Safety Evaluation

• Quantified and expressed as overall dropout rates.

• Dropout rates commonly increase as the dose is up-titrated.

• Dropout rates should be approximated based on historical data or reliable sources such as notable publications or agencies’ guidance.

• We assume the following overall moderate dropout scenario

<table>
<thead>
<tr>
<th>Dropout Scenario</th>
<th>Pbo</th>
<th>6 mg</th>
<th>9 mg</th>
<th>12 mg</th>
<th>15 mg</th>
<th>18 mg</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>17%</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>35%</td>
<td>35%</td>
<td>24%</td>
</tr>
</tbody>
</table>
Clinically Significant Minimum Utility (CSMU) for Both Efficacy and Safety

1. Employ utility functions that quantitatively describe efficacy and safety as one 1-dimensional component utility function separately first
 – Component utility function for efficacy \(e \) as \(U_E(e) \)
 – Component utility function for safety \(s \) as \(U_S(s) \)

2. Balance them by combining both component utility functions into one 2-dimensional bivariate function.
 – Multiplicatively, i.e., \(U_{E,S}(e,s) = U_E(e) U_S(s) \).

3. Each component utility function is piece-wise continuous function over a set of intervals. Within each interval \(i \), the function takes flexible parametric form:

\[
U_{\uparrow i}(x) = \alpha x^{\uparrow 2} + \beta x + \gamma + \delta \exp(\varepsilon x) + \phi \log(x)
\]

• Utility functions are feasible and reasonable because of their arbitrary origin and scale (Keeney and Raiffa (1976)).
Designing a Cost-effective Dose-finding Phase 2 Trial with Adaptive Design – CSMU (2)

Clinically Significant Minimum Utility (CSMU) for Both Efficacy and Safety (cont’d)

Each segment of the utility function within an interval along with the knots are pre-specified based on historical data or prior knowledge.

Combined utility function is then used for allocation and evaluation of the trial’s both interim and final success and futility.

Clinically Significant Minimum Utility (CSMU) value is the lower bound of acceptable utility function values.

Dose with the highest utility value, i.e., maximizing $U_{E,S}(e,s)$, is called the maximum effective utility dose, denoted as $d_{U_{\text{max}}}$.
Designing a Cost-effective Dose-finding Phase 2 Trial with Adaptive Design – CSMU (3)

\[
U_x(x) = \begin{cases}
0 & \text{if } -\infty < x \leq 0 \\
1.5625x^2 & \text{if } 0 < x \leq 0.8 \\
x + 0.2 & \text{if } 0.8 < x < \infty
\end{cases}
\]

\[
U_y(y) = \begin{cases}
1 & \text{if } 0 \leq y \leq 0.2 \\
-2y + 1.4 & \text{if } 0.2 < y < 0.7 \\
0 & \text{if } 0.7 < y \leq 1
\end{cases}
\]

Piece-wise Continuous Function

Knots are Pre-specified

Efficacy and Safety Separately
Combining Utilities

Contour Plot of Utility by Efficacy and Dropout

3D Plot of Utility by Efficacy and Dropout

Clinically Significant Minimum Utility (CSMU)
Designing a Cost-effective Dose-finding Phase 2 Trial with Adaptive Design – Stopping for Futility

Stopping for Futility

A trial can be terminated early due to futility during interim monitoring.

Sample stopping rules:

• Probability that $d_{U_{\text{max}}}$ would be superior to placebo in a future randomized Phase 3 trial

\[
\Pr (\text{Success in Phase 3 for } d_{U_{\text{max}}}) < 0.10
\]

\[
d_{U_{\text{max}}} \equiv \text{maximum effective utility dose}
\]

• Probability that $d_{U_{\text{max}}}$ would have a clinically significant difference (CSD) over placebo

\[
\Pr (\vartheta_{d_{\text{max}}} - \vartheta_0 > \text{CSD}) < 0.10
\]

• Probability that the utility function U for the dose with the best utility value ($d_{U_{\text{max}}}$) is better than the clinically significant minimum utility (CSMU)

\[
\Pr (U > \text{CSMU}) < 0.10
\]
Designing a Cost-effective Dose-finding Phase 2 Trial with Adaptive Design – Stopping for Success

Stopping for Success

The trial can be stopped for success if ALL success criteria are met:

Sample stopping rules:

- $\Pr (\text{Success in Phase 3 for } d_{U_{\text{max}}}) > 0.85$
- $\Pr (\theta_{d_{\text{max}}} - \theta_0 > \text{CSD}) > 0.85$
- $\Pr (U > \text{CSMU}) > 0.85$
Designing a Cost-effective Dose-finding Phase 2 Trial with Adaptive Design – ENPV (1)

Calculation of NPV

• For each simulated Phase 2b trial where a dose was selected to carry into Phase 3 trials:

 – Analytically calculate predictive PoS = Pr(Both Phase 3 trials show significance) using Normal priors for Phase 3 trials with mean and SD of Phase 2b posterior distribution

 – Use this probability to calculate $E(\text{NPV})$ for the simulated Phase 2b trial by combining

 o NPV calculated from commercial model when there is Success
 o Negative NPV calculated from Phase 2b and Phase 3 trial costs when there is No Success

• Estimate $E(\text{NPV})$ by averaging over all Phase 2b simulated trials
Designing a Cost-effective Dose-finding Phase 2 Trial with Adaptive Design – ENPV (2)

Calculation of NPV (con’d)

• Let $e(d_i)$ denote the true mean diff. in efficacy from placebo for dose d_i

• Let $s(d_i)$ denote the true nuisance AE rate (tolerability) for dose d_i

Table shows fifth year net revenue (B) from marketing a single dose that reflect trade-offs between efficacy and tolerability

<table>
<thead>
<tr>
<th>$e(d_i)$</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.55</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.25</td>
<td>0.2</td>
<td>0.15</td>
<td>0.1</td>
<td>0.075</td>
<td>0.05</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5625</td>
<td>0.45</td>
<td>0.3375</td>
<td>0.225</td>
<td>0.16875</td>
<td>0.1125</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>1.0</td>
<td>1.2</td>
<td>0.96</td>
<td>0.72</td>
<td>0.48</td>
<td>0.36</td>
<td>0.24</td>
</tr>
<tr>
<td>1.2</td>
<td>1.4</td>
<td>1.12</td>
<td>0.84</td>
<td>0.56</td>
<td>0.42</td>
<td>0.28</td>
</tr>
<tr>
<td>1.4</td>
<td>1.6</td>
<td>1.28</td>
<td>0.96</td>
<td>0.64</td>
<td>0.48</td>
<td>0.32</td>
</tr>
</tbody>
</table>
SIMULATION RESULTS
Simulation Results – Probabilities of Futility and Success

<table>
<thead>
<tr>
<th>Dose Response Scenario</th>
<th>Phase 2 Sample Size</th>
<th>Prob of Going to Phase 3</th>
<th>Prob of Phase 3 Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>Adaptive</td>
<td>Fixed</td>
<td>Adaptive</td>
</tr>
<tr>
<td>No Signal</td>
<td>400</td>
<td>338</td>
<td>0.002</td>
</tr>
<tr>
<td>12 Level Off</td>
<td>400</td>
<td>366</td>
<td>0.553</td>
</tr>
<tr>
<td>12 Drug</td>
<td>400</td>
<td>372</td>
<td>0.481</td>
</tr>
<tr>
<td>9 Level Off</td>
<td>400</td>
<td>385</td>
<td>0.157</td>
</tr>
<tr>
<td>9 Level Slow</td>
<td>400</td>
<td>374</td>
<td>0.429</td>
</tr>
<tr>
<td>9 Drug</td>
<td>400</td>
<td>380</td>
<td>0.358</td>
</tr>
<tr>
<td>15 Drug</td>
<td>400</td>
<td>381</td>
<td>0.308</td>
</tr>
<tr>
<td>18 Drug</td>
<td>400</td>
<td>380</td>
<td>0.305</td>
</tr>
<tr>
<td>18 Super</td>
<td>400</td>
<td>360</td>
<td>0.621</td>
</tr>
</tbody>
</table>

- **Smaller**: 12 Level Off, 9 Level Off, 9 Level Slow
- **Higher**: No Signal, 12 Drug, 18 Drug

Higher for Probabilities of Phase 3 Success
Simulation Results – Total Development Time and ENPV

<table>
<thead>
<tr>
<th>Dose Response Scenario</th>
<th>Total Dev Time (in yrs)</th>
<th>ENPV ($B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed</td>
<td>Adaptive</td>
</tr>
<tr>
<td>No Signal</td>
<td>7.0</td>
<td>6.8</td>
</tr>
<tr>
<td>12 Level Off</td>
<td>7.1</td>
<td>7.0</td>
</tr>
<tr>
<td>12 Drug</td>
<td>7.1</td>
<td>7.0</td>
</tr>
<tr>
<td>9 Level Off</td>
<td>7.1</td>
<td>7.0</td>
</tr>
<tr>
<td>9 Level Slow</td>
<td>7.1</td>
<td>7.0</td>
</tr>
<tr>
<td>9 Drug</td>
<td>7.1</td>
<td>7.0</td>
</tr>
<tr>
<td>15 Drug</td>
<td>7.1</td>
<td>7.0</td>
</tr>
<tr>
<td>18 Drug</td>
<td>7.1</td>
<td>7.0</td>
</tr>
<tr>
<td>18 Super</td>
<td>7.1</td>
<td>7.0</td>
</tr>
</tbody>
</table>

- **Similar Duration**: Lower development time with similar ENPV
- **Higher Revenue**: Lower development time with higher ENPV
Conclusions and Discussion

• Adaptive randomization with utility function appears to be a more efficient approach for the characterization of the dose-response profile of an experimental drug.

• ENPV is generally higher for adaptive design than fixed-arm design.

• Expected sample size for Phase 2 trials is overall smaller for adaptive design.

• Predicted probability of success of Phase 3 trials is higher for adaptive design.

• ENPV is directly related to clinical utility, so it can be thought of as optimizing for clinical utility.

• Work is ongoing to refine/finalize the design parameters for the adaptive randomization with utility function framework to enable selection of ED dose(s) with maximum probability of success in Phase 3.
References

BACK UP
Designing a Cost-effective Dose-finding Phase 2 Trial – Dose-respond Models for Efficacy

Dose-Response Models for Efficacy

• Normal Dynamic Linear Model (NDLM)

• A flexible and robust model for capturing non-monotonic curves.

• Let $i = 1, \ldots, k$ be the subject indices. Let subject i have dose $d_i = 0, 1, \ldots, D$, in which the placebo control is labeled as $d = 0$, the active comparator is labeled as $d = D$, $Y_i \sim \theta_d + N(0, \sigma^2)$.

• The prior distribution for the first dose, $d = 1$, is $\theta_1 \sim N(\mu_1, \nu_1^2)$ and $\theta_d \sim N(\theta_{d-1}, \tau_{d-1}^2)$ for $2 < d < D$

• The prior distribution of the drift term τ is $\tau^2 \sim IG \left(\frac{\tau_n}{2}, \frac{\tau_n^2}{2} \right)$

• The prior distribution of the error term σ is $\sigma^2 \sim IG \left(\frac{\sigma_n}{2}, \frac{\sigma_n^2}{2} \right)$

• The placebo and active are modeled separately with prior distributions of $\theta_0 \sim N(\mu_0, \nu_0^2)\theta_D \sim N(\mu_D, \nu_D^2)$
Designing a Cost-effective Dose-finding Phase 2 Trial – Longitudinal Models for Efficacy

Longitudinal Models for Efficacy

• Design the trial with multiple visits instead of a single visit.
• A longitudinal model will be employed to enable final observations to be imputed for those subjects that only have intermediate responses.
• Separate longitudinal models might be fitted to various doses.
• We use the simple linear regression model to accommodate the correlation between final observations and intermediate responses.
• A common model is used for each dose and a separate model for the placebo and one for the active comparator arm.
• The primary end point is modeled as $Y_i \mid y_{it} \sim \alpha_t + \beta_t y_{it} + N(0, \lambda_t^2)$
• The prior distributions of α_t, β_t, and λ_t are

$$
\begin{align*}
\alpha_t &\sim N(\alpha_\mu, \alpha_\sigma^2) \\
\beta_t &\sim N(\beta_\mu, \beta_\sigma^2) \\
\lambda_t^2 &\sim IG\left(\frac{\lambda_n}{2}, \frac{\lambda_\mu \lambda_n}{2}\right)
\end{align*}
$$
5 doses of ED are labeled as \(d = 1, 2, 3, 4 \) and 5. The placebo is labeled as \(d = 0 \) and the active is labeled as \(d = 6 \).

For subject \(i \) on dose \(d \),

\[Y_{12,i,d} \sim N(\theta_d, \sigma^2) \]

The prior distribution for the first dose, \(d = 1 \), is

\[\theta_1 \sim N(1.8, 2.5^2) \text{ and } \theta_d \sim N(\theta_{d-1}, \tau^2) \text{ for } d = 2, 3, 4, 5 \]

The prior distribution of the drift term \(\tau \) is \(\tau^2 \sim IG(0.5, 8) \).

The prior distribution of the error term \(\sigma \) is \(\sigma^2 \sim IG(0.001, 1000) \).

The placebo and active are modeled separately with prior distributions of \(\theta_0 \sim N(1.8, 2^2) \) and \(\theta_6 \sim N(2.8, 2^2) \), respectively.
Given the change from Baseline pain score at visit t (at least Week 2), the final response for subject \(i\) on dose \(d\) is modeled as,

\[
Y_{i,d} | y_{i,d,t} \sim N (\alpha_t + \beta_t y_{i,d,t}, \lambda_t^2)
\]

The prior distributions of \(\alpha_t\), \(\beta_t\), and \(\lambda_t\) are

- \(\alpha_t \sim N (0, 3^2)\)
- \(\beta_t \sim N (0.8, 0.25^2)\)
- \(\lambda_t^2 \sim IG (0.5, 1.36)\)

All the ED doses are modeled together. And the placebo and active are modeled separately.
Simulation Set-up: Accrual Profile

- We assume that accrual will ramp-up starting for the first 14 weeks and then reach a peak accrual rate of 10 patients per week in week 15 until accrual is complete.
Simulation Set-up: AE Rates

- We assume a decreasing drop-out rate at each visit resulting in the requested overall drop-out rates as below for each treatment arm.

<table>
<thead>
<tr>
<th>Visit</th>
<th>Placebo</th>
<th>6 mg</th>
<th>9 mg</th>
<th>12 mg</th>
<th>15 mg</th>
<th>18 mg</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>0.085</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.175</td>
<td>0.175</td>
<td>0.12</td>
</tr>
<tr>
<td>Week 4</td>
<td>0.04235</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.0875</td>
<td>0.0875</td>
<td>0.06</td>
</tr>
<tr>
<td>Week 6</td>
<td>0.02125</td>
<td>0.0375</td>
<td>0.0375</td>
<td>0.0375</td>
<td>0.04375</td>
<td>0.04375</td>
<td>0.03</td>
</tr>
<tr>
<td>Week 8</td>
<td>0.010625</td>
<td>0.01875</td>
<td>0.01875</td>
<td>0.01875</td>
<td>0.021875</td>
<td>0.021875</td>
<td>0.015</td>
</tr>
<tr>
<td>Week 12</td>
<td>0.010625</td>
<td>0.01875</td>
<td>0.01875</td>
<td>0.01875</td>
<td>0.021875</td>
<td>0.021875</td>
<td>0.015</td>
</tr>
</tbody>
</table>
Simulation Set-up: Time and Cost Estimates

<table>
<thead>
<tr>
<th>Factors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patent life</td>
<td>17 years</td>
</tr>
<tr>
<td>Duration of development time prior to phase 2 trial that cuts into the patent life</td>
<td>2 years</td>
</tr>
<tr>
<td>Total number of sites in phase 2 trial</td>
<td>50</td>
</tr>
<tr>
<td>Time between completion of phase 2 trial and the 1st subject 1st visit in phase 3 trials</td>
<td>6 months</td>
</tr>
<tr>
<td>Patient accrual rate per month per site in phase 3 trials</td>
<td>1</td>
</tr>
<tr>
<td>Total number of sites in each phase 3 trial</td>
<td>80</td>
</tr>
<tr>
<td>Time between end of phase 3 trials and product launch</td>
<td>12 months</td>
</tr>
<tr>
<td>Upfront cost per site</td>
<td>1.5K</td>
</tr>
<tr>
<td>Cost per patient</td>
<td>3.5K</td>
</tr>
<tr>
<td>Startup cost of manufacturing</td>
<td>1M</td>
</tr>
<tr>
<td>Revenue model parameter b</td>
<td>0.1</td>
</tr>
<tr>
<td>Revenue model parameter c</td>
<td>0.5</td>
</tr>
<tr>
<td>Annual discount rate to be used to calculate ENPV</td>
<td>10%</td>
</tr>
<tr>
<td>Minimum number of subjects per dose in phase 2 and phase 3 trials necessary to satisfy ICHE1 requirement</td>
<td>1500</td>
</tr>
<tr>
<td>Proportion of phase 2 subjects completing 12 month long-term extension trial</td>
<td>50%</td>
</tr>
</tbody>
</table>

Time and cost estimates used in ENPV calculations (all costs are in US dollars)