STATISTICS IN MEDICINE, VOL. 14, 2143-2160 (1995)

EXACT LOGISTIC REGRESSION: THEORY AND EXAMPLES

CYRUS R. MEHTA AND NITIN R. PATEL

Department of Biostatistics, Harvard School of Public Health, U.S.A., and Cytel Software Corporation,
675 Massachusetts Ave., Cambridge, MA 02139, U.S.A.

SUMMARY

We provide an alternative to the maximum likelihood method for making inferences about the parameters
of the logistic regression model. The method is based appropriate permutational distributions of sufficient
statistics. It is useful for analysing small or unbalanced binary data with covariates. It also applies to
small-sample clustered binary data. We illustrate the method by analysing several biomedical data sets.

1. INTRODUCTION

This paper deals with exact conditional inference for the parameters of the logistic regression
model that describes the relationship between a dichotomous outcome and a set of explanatory
variables. It is customary to maximize the unconditional likelihood function for parameter
estimation, and to perform hypothesis tests with either the Wald, the likelihood ratio, or the
efficient scores statistics. For data sets with small sample sizes or unbalanced structure, and for
highly stratified data, these asymptotic methods are unreliable. An alternative approach is to base
the inference on exact permutational distributions of the sufficient statistics that correspond to
the regression parameters of interest, conditional on fixing the sufficient statistics of the remaining
parameters at their observed values. This approach, suggested by Cox,' was not considered
computationally feasible until the development of fast algorithms for deriving these distributions
in work by Tritchler,? Hirji et al,>* and Hirji.* Breslow and Day® presented a related asymptotic
conditional approach for logistic regression on matched sets. These investigators proposed
treating each matched set as a separate stratum and eliminating all stratum-specific parameters
from the likelihood function by conditioning on their sufficient statistics. The inference is then
based on maximizing a conditional likelihood function. Although easier, computationally, than
the exact permutational approach, conditional maximum likelihood estimation is not a trivial
problem. Gail et al.” developed a recursive algorithm to do the computations efficiently.

This paper describes the underlying theory for exact conditional inference, summarizes recent
algorithmic developments that make this type of inference computationally feasible, and provides
several illustrative examples that contrast exact conditional inference with the more customary
unconditional maximum likelihood approach.

2. MODELS, LIKELIHOOD AND SUFFICIENT STATISTICS

We consider two classes of models: logistic regression for unstratified binary data, and logistic
regression for stratified binary data. In this section we discuss a uniform method of exact inference
for both models, based on permutational distributions of appropriate sufficient statistics.
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2.1. Logistic regression for unstratified binary data

Consider a set of independent binary random variables, Y}, Y5, ..., ¥,. Corresponding to each
random variables, ¥;, there is a (p x 1) vector X; = (x,, X2, ..., Xp;)’ Of explanatory variables (or
covariates). Let n; be the probability that ¥; = 1. Logistic regression models the dependency of =;
on x; through the relationship

log(l f"n)=y+x;ﬁ, (1)

i
where y and g = (84, B2, ---» B,) are unknown parameters. The likelihood function, or probability
of an observed set of values, y;,¥2,..., Vn, IS

_ - _ oy = P [E5=1y(xjB + )]
Pr(Yl =5 yl! YZ = Y2, Yn = yn)_ n;|=1[1 T exp(x}ﬁ+ ?)]

The usual way to make inferences about § and y is to maximize (2) with respect to these regression
coefficients.

Suppose we have interest in inferences about f, and regard y as a nuisance parameter. Then,
instead of estimating y from the above unconditional likelihood function, we can eliminate it by
conditioning on the observed value of its sufficient statistic

)

This yields the conditional likelihood function,

E exp(Y]=1y;x;B)
YrlexpYi-1y;x;B)

where the outer summation in the denominator of (3) is over the set

PI'(Yl=)’1,Y2=J’z»---,Yn=}’n|m) (3)

R= {(ylsst"-)yn): Z yj= m}'
j=1

We can now approach inference about f in two ways: asymptotic and exact. An asymptotic
approach is to maximize the conditional likelihood function (3). This is a special case of the
Breslow and Day® method discussed in the next section for handling stratified data. Exact
inference about B is based on the permutational distribution of its sufficient statistics. One can
observe from the form of (3) that the (p x 1) vector of sufficient statistics for f is

t= ¥y, @

J
and its distribution is
c(t)e'?

Pr(T,=1t,,T, = t;,...,TF= tp) =E—CG)BTH =

©)

where

c(® =151,

S(t) = {()HJ::---J-)i Z yj=m,
j=1

J

ij,'j= t",l. = 1,2,...,P},
=1

J
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|S| denotes the number of distinct elements in the set S, and the summation in the denominator is
over all u for which c(u) > 1. In other words, ¢(t) is the count of the number of binary sequences of
the form (y,,ys,...,,) such that ¥;y;,=m and ¥ ;y;x; =t for i = 1,2, ...,p. Exact inference
about f requires computation of coefficients such as c¢(t) in which some of the sufficient
statistics are fixed at their observed values and others are required to vary over their permissible
ranges.

2.2. Logistic regression for stratified binary data

Suppose there are N strata, with binary responses in each of them. Let the ith stratum have m;
responses and n; — m; non-responses. For all 1 <i< N, and 1 <j<n,, let ¥;; =1 if the jth
individual in the ith stratum responded; 0 otherwise. Define n;; = Pr(Y;; = 1|x,;) where x;; is
a p-dimensional vector of covariates for the jth individual in the ith stratum. The logistic
regression model for =;; is of the form

log( y )=v.—+x§,~ﬁ, (6)

I—TI;J'

where y; is a stratum specific scalar parameter and f is a (p x 1) vector of parameters common
across all N strata. Usual interest is in inferences about f, with the y,’s regarded as nuisance
parameters. One could, of course, estimate these nuisance parameters by the maximum likelihood
method. The usual asymptotic theory of maximum likelihood estimation, however, requires that
the dimension of the parameter space is fixed as the number of observations increase. Cox and
Hinkley® (page 292) observe in general that when the dimension of the parameter space is large
comparable to the number of observations, the MLE can have serious bias. A classic example of
this situation, discussed in both Andersen® (page 69) and Breslow and Day® (page 249), is the
estimation of the common odds ratio from matched pairs data. A logistic regression model for
such data would contain a set of stratum specific nuisance parameters, one for each matched pair,
and a single odds ratio parameter, common across all the matched pairs. If one estimates the
stratum specific nuisance parameters from the data, the estimate of the common odds ratio has
been shown to converge to the square of its true value.

Instead of estimating all the stratum specific parameters, an alternative approach, popularized
by Breslow and Day,® is to eliminate these nuisance parameters by conditioning on their
sufficient statistics, in this case, the number of responses, m;, in each stratum. The conditional
likelihood, or conditional probability of observing ¥;; = yy;,j = 1,2,...,m,i = 1,2,..., N is then

exp[Yy=1 Xj1 Vi (xi;8)]
T Trexp[Titg T yii(xiiB)]

where the two outer summations in the denominator are over the sets

PT(Yl=}’1,Y2=)’2s---,Yn=yn|m1:m2’---’mﬁ)= (7)

ni
Rl' in {(YH: tee Yiu.-): Z YIJ = mi} ’
i=1
for i=1,2,...,N. Notice that the nuisance parameters, y;, have factored out of the above
conditional likelihood. The Breslow and Day® approach is to make asymptotic inferences about
B by maximizing (7). Exact inference is based on the sufficient statistics for .
From (7) we can see that the vector of sufficient statistics for f is

N ni
t= Z Z YiiXijs (8)
i=1 j=1
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and its conditional distribution is

c(t)ef
P]'(Tl =t1,T2=t2,...,Tp=t,,)-“ () (9)

" Tacuer™’

where

c(t) = |Sy(t)],
N ni ni
SN(t)={(le’]= 1,...,n,-,1'= 1,..-,N): Z y,~,-x,_,-=t, Z y,-j=m;},
i=1 j=1 ji=1

IS denotes the number of distinct elements in the set Sy, and the summation in the denominator
is over all u for which c(u) > 1. In other words, ¢(t) is the count of the number of ways of selecting

the binary sequence {y;,i=1,...,N, J=1,...,n} so as to satisfy the two conditions
N ni
Y VX =1t, (10)
i=1 j=1
and
ni
Z Yij=m;. (11)
j=1

Notice that the distribution of T is of the same form for both stratified and unstratified logistic
regression. This makes it possible to develop a single numerical algorithm for both cases.

3. EXACT CONDITIONAL INFERENCE
3.1. Conditional inference for a single parameter

Suppose without loss of generality that we wish to make inferences about the sin gle parameter f,,.
By the sufficiency principle, the conditional distribution of T, given t,,¢,, ..., I, depends only
on B,. Let f(t,| B,) denote the conditional probability Pr(T, =¢t,|T, = ¢,, ..., T, ,=t,_). Then

c(ty, tz,...,t,)ebw
Tatltssty, cssly— g u)eh=’

f(tp’ﬁp) = (12)
where the summation in the denominator is over all values of u for which c(ty,t,, ..., Lp_pu) =1,
Since this probability does not involve the nuisance parameters (£, 85, ..., B,-,), we can use it for
inference about f,. Notice that the above conditional probability is of the same form whether ¢ is
defined by equation (5) or by equation (9), thereby providing a unified method of exact inference
for both the unstratified and stratified logistic regression models.

3.1.1. Hypothesis testing

Suppose we wish to test

H 0: B P = 0
against the two-sided alternative

H1: B,,#O
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We obtain the exact p-value by summing (12) over some specified critical region E:

p=2 flB,=0). (13)
veE
We can specify the critical region E in different ways that lead to different types of tests. Two
popular tests are the ‘conditional probabilities’ test, and the ‘conditional scores’ test. In the
conditional probabilities test, the critical region, denoted by E,, contains all values of the test
statistic that yield a conditional probability no larger than the conditional probability at the
observed value of t,:

Ecp & {v:f(viﬁp = 0} "<-.f(tp| ﬁp = 0)} . (14)

In the conditional scores test, the critical region, denoted by E.,, contains all values of the test
statistic whose conditional scores equal or exceed the conditional score at the observed value of
the test statistic:

Ecs - {UI(U == #p)z o'p_z = (tp El #p)z 0;2} ’ (15)

where u, and o2 are the mean and variance of T}, based on its conditional distribution as
specified by (12) at #, = 0. For both types of exact tests we need an algorithm that can give us all
the coefficients, c(t;,t5, ..., tp—1,0), With £1,¢5,..., ¢, fixed at their observed values, and v vary-
ing over the entire range of 7,. Once we obtain these coefficients, computation of the exact
p-value is simply a matter of appropriate sorting and summing.

An asymptotic version of the conditional scores test is also possible. Here, we obtain the
p-value by referring the observed score, (t, — p,)* o, 2, to a chi-squared distribution on one
degree of freedom. Note though that even for this asymptotic test it is necessary to compute the
conditional mean, y,, and the conditional variance, o,. Asymptotic approximations to these
conditional moments are available in Zelen.'®

3.1.2. Estimation
To obtain a level-a confidence interval, (f-, f.) for B,, we invert the above test. Define
Fi(t,|B)= Y f(IB)

vty
and

Fyt,18) = % f(vlB)

v<tp

Let g, and £, be the smallest and largest possible values of ¢, in the distribution (12). The lower
confidence bound, f_, is such that

Fi(tplp-)=a/2 if tmin < tp < bmaxs
B-=—o0 if t, = tmin-
Similarly the upper confidence bound, f., is such that
Fa(tpylB+) = a/2 if tmin < tp < Lmaso

By =00 ift,=tp.
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One can show that this definition does indeed produce an interval, and the interval is guaranteed
to have the desired (100)(1 — ) per cent coverage for f,.

We can compute a point estimate for f, in two ways. We obtain the conditional maximum
likelihood estimate, fomic, by maximizing f(t,|8) by choice of B. If, however, either ¢, = tmin, OF if
tp = tmax, Bemie is undefined, since we cannot maximize the likelihood function. An alternative
estimate for §, that has several useful properties (see, for example, Hirji et al.'!) is the median
unbiased estimate

ﬁmue =(B+ +ﬁ—)/2’

where we evaluate f_ and . at a confidence level « = 0-5. If B = — oo, we define Sy = B+,
whileif B, = oo, we define By = f-. Thus, unlike the maximum likelihood estimate, the median
unbiased estimate is always defined, even at the extreme points of the sample space.

3.2. Conditional inference for several parameters

To make inferences about several parameters simultaneously we need the joint distribution of
their sufficient statistics conditional on the observed values of the remaining sufficient statistics.
Suppose we partition the (p x 1) vector of regression parameters B into two parts; a (py x 1)
component, B, and a (p; x 1) component, §,. Let t, and t, denote the corresponding vectors of
sufficient statistics. We wish to test the null hypothesis

Hy: B2=0

against the two-sided alternative that at least one of the elements of f; is not 0. By the sufficiency
principle, the conditional distribution of T, given T, = t, is free of the nuisance parameters f;.
Thus, we denote the conditional probability Pr(T, = t,|T, = t,) by f(t2| ), where

C(tbtz)e"ﬂ2
Z-c(tls“)p;“’
and we take the summation in the denominator of (16) over all values of uw for which

¢(t,,u) = 1. We obtain the exact two-sided p-value for testing Ho by summing (16) over some
critical region E:

[tz B2) = (16)

p=2 fv|p:=0). (17)
veE
Again we have two types of critical regions that lead, respectively, to the conditional probabilit-
jes test and the conditional scores test. The critical region for the conditional probabilities
test is

Eo, = {v:f(v| B2 = 0) < f(t2| B> = 0)}. (18)
The critical region for the conditional scores test is
Eo={v:i(v—pa) T2 (v—p2) = (2 — p2) 2ty — )}, (19)

s is the mean, and ¥, is the variance covariance matrix of f(t;| B> = 0). For both types of tests
we need an algorithm that can give us all the coefficients c(t,, v) with t, fixed and v varying over
the entire range of T,.
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3.3. Predictive inference

Given the unstratified logistic regression model (1), suppose we wish to compute an exact
confidence interval for g, the probability of a response at x = x¢. To do so, re-write the model in
the form

1—mn;

J

log( 2 ) = (4 + XoB) + (X) — Xo)B. (20)

Now, exact inference for the constant term y + x,f in the above re-parameterized model,
based on the method described in Section 3.1, will produce an exact confidence interval
for log(mg/1 — my). We can transform this confidence interval into a prediction interval for
n, by applying the function exp(-)/{l —exp(:)} to the upper and lower bounds of the
confidence interval. The above procedure is easy to implement in practice. One simply shifts each
x; by subtracting x, from it. Then one estimates the constant term based on the transformed
data set.

3.4. Simultaneous inference on linear combinations of parameters

For notational convenience, without loss of generality, let us represent both the unstratified and
stratified logistic regression models in one common form

logit(IT) = X8, (21)

where logit(IT) is a nx 1 vector of logit response probabilities whose jth component is
log(n;/1 — =;), X is an n x p data matrix, and we have incorporated the constant terms into the
(p x 1) parameter vector . Suppose we wish to test the hypothesis

Hy:Cg=0,
where C is a (r x p) matrix of full rank. We can test H, by rewriting the model (21) as
logit(IT) = X + XGC§, (22)
where G’ is the (r x p) orthocomplement to C, that is, GC = 0. After reparameterizing (22) as
logit(IT) = X, B, + X, 8, (23)

where X, = X, X, = XG, B, = B, and p, = CB, we can test Ho: f, = 0 by deriving the exact
distribution of T,|T, = t; as described in Section 3.2.

4. NUMERICAL ALGORITHMS

We confine ourselves to referencing the most recent algorithmic developments for exact logistic
regression, rather than to describe these algorithms in detail here. Byar and Cox!'? developed an
early algorithm in which all possible binary sequences of the Y variable are enumerated
exhaustively. Tritchler? provided a substantial improvement relative to exhaustive enumeration,
using a specific application of the inverse Fourier transform algorithm of Pagano and Tritchler.!?
Tritchler’s algorithm, however, only applies to models with a single covariate, with possible
stratification for matched sets. Hirji et al.>* developed a general and efficient algorithm for
evaluating the permutational distribution of T,|T; = t, (see equation (16)) for unstratified data,
and subsequently extended it to the stratified case. Hirji® has recently extended these algorithms
further to allow for polytomous regression.
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5. EXAMPLES

The five examples in this section illustrate various important features of exact logistic
regression, and the additional insights it can provide relative to maximum likelihood inference.
Example 5.1 is a good, overall introduction to exact inference. It explains why the maximum
likelihood method might fail for unbalanced data sets, and how one can nevertheless obtain valid
inferences by generating exact permutational distributions of sufficient statistics. This example
also illustrates the computation of exact prediction intervals. Example 5.2 highlights exact
simulataneous hypothesis testing of several parameters. Example 5.3 illustrates exact inference for
a single parameter in a stratified setting. The analysis is equivalent to computing the exact
Cochran-Armitage test of trend across several 2 x ¢ contingency tables. Example 5.4 shows
how one can use the exact logistic regression framework to analyse data from a cross-over
clinical trial, and how one can specialize it to encompass the exact Cochran’s Q test, and
extensions of McNemar’s test. Finally, example 5.5 illustrates the use of exact stratified logistic
regression for comparing the dose-response relationships of two drugs in a repeated measures
setting. All the calculations were performed by LogXact,'* a new statistical package for exact
logistic regression.

5.1. Predictors of disease free survival for osteogenic sarcoma

In a 46-patient study of non-metastatic osteogenic sarcoma conducted by Goorin et al.,! the
investigators had interest in determining the predictors for a three year disease-free interval
(DFI3). The covariates of interest weere gender (SEX), any osteoid pathology (AOP), and
lymphocytic infiltration (LI). The data appear in Table I.

One can show, by running Fisher’s exact test on individual 2 x 2 contigency tables formed from
cross-tabulations of DF13 with each covariate in turn, that the marginal effects of LI, SEX and
AOP on DFI3 are all statistically significant at the 5 per cent level. (The respective two-sided
P-values are 0-0075, 00259 and 0:0322.) The goal, however, is to study the effects of these three
covariates simultaneously through the logistic regression model

3
log( X )=y+'_2 Bixyy, @4

l—n_,-

where, for the jth subject: x,; = 1 if LI is present and 0 otherwise; x,; = 1 if SEX is male and
0 otherwise; x3; = 1 if AOP is present and 0 otherwise. Unfortunately we cannot fit the above
model to the data by the method of maximum likelihood because x,; is a perfect predictor.
Notice that, since every subject free of lymphocytic infiltration had a three year disease-free
interval, the 2 x 2 table of DFI3 versus LI contains a zero cell count. In this situation the
log-likelihood function cannot be maximized but approaches a finite upper bound as 8, goes to
— oo. Therefore we cannot evaluate the first and second derivatives of the log-likelihood at the
MLE, and it is not possible to estimate B, or its confidence interval by conventional maximum
likelihood methods.

Exact inference is possible, however, and does provide a new insight with the data. Let
(to, 11,1, t3) denote the sufficient statistics that correspond to (3, 8;, B2, B3). Note that t; is just the
sum of covariate-i values over all subjects with a three year disease-free interval. Thus t, = 29,
t; =19, t; = 16 and t3 = 12. The distribution of counts, ¢(to = 29, t,,t, = 16, t; = 12), for all
possible values of ¢; appears in Table II.

1. There are nearly 800 million binary sequences of the form (y,,ys,...,¥ss) implicit in
Table II. Yet, there are only eight distinct vectors of sufficient statistics of the form

-y
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Table I. Osteogenic sarcoma data

=

SEX AOP  Proportion
DFI3

0 3/3 (100%)
1 2/2 (100%)
0 4/4 (100%)
1 1/1 (100%)
0 5/5 (100%)
1 3/5 (60%)
0 5/9 (56%)
1 617 (35%)

— et kDD OO
O O OO

Table II. Exact conditional distribu-
tion for osteogenic sarcoma data

ts (29,14, 16,12)
19 29,445,360
20 147,312,480
21 271,271,448
2 231,819,344
23 95,325,644
24 17,473,144
25 1,204,008
26 19,448
Total 793,870,896

(to =29,1,,1t, = 16,13 = 12), because so many different binary sequences yield the same
values for the sufficient statistics. In operations research terminology this phenomenon
is known as ‘clubbing’ (perhaps because different binary sequences belong to the same club,
or vector of sufficient statistics). A good algorithm must exploit this clubbing, because
otherwise, exhaustive enumeration of all possible binary sequences is computationally
explosive.

. The exact conditional distribution of T, is extremely asymmetric. Normal approximations
would not work too well, though Edgeworth and saddlepoint approximations might be
worth trying.

. The observed value, ¢; = 19, is at the minimum of its range. This is the reason for the
failure of the maximum likelihood method to produce estimates of the regression para-
meters.

Exact inference about the parameter that corresponds to LI is now straightforward. The exact
one-sided p-value for testing 8, =0 is

p = 29445360/793870896 = 0-037.
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Table III. Parameter estimates for osteogenic sarcoma data

Parameter Point estimate Exact 95% CI Exact P-value
y 3-535 1477 to o 0-0001

p* — 0737 — 1910 to 0:310 0164

B — 1-886 — o0 to 0-160 0-061

B2 — 1-548 — 4025 to 0-363 0117

B3 —1-156 — 2997 to 0-512 0154

Since t, is at its minimum value, the lower 95 per cent confidence bound for #; is — co. The upper
95 per cent confidence bound, 8., is the solution to
¢(29,19,16,12)e%?*

26 10¢(29,t,,16,12)e" 4+

= 0025.

Binary search rapidly yields 8, = 0-16.

The conditional distributions of the other sufficient statistics and the corresponding parameter
estimates obtain similarly. We can also translate the data for predictive inference, as discussed in
Section 3.3, and then re-compute the parameter estimates. The results are shown in Table IIL. The
p-values are all two-sided and based on the exact conditional scores test defined by equations (13)
and (15). The parameter y* is the constant term of the model (24) after translating the data by
subtracting 1 from x;; for all  and j. Unlike the Fisher exact tests conducted on each variable
separately, these results reveal that in a regression analysis, taking into account all three variables
simultaneously, LI is marginally significant at the 0-06 level, while SEX and AOP are not. The
exact confidence intervals for y and y* have a particularly useful interpretation. Observe that the
lower confidence bound for y is 1-48. Following the discussion in Section 3.3, the probability that
the most favourable subjects (females with no lymphocytic infiltration or ostoid pathology) will
have a three year disease-free interval is at least

exp(1-48)

e L ARG |
1 + exp(1-48) 814,

with 95 per cent confidence. Similarly, by exponentiating the confidence interval for y*, we can
guarantee with 95 per cent confidence that the probability of a three year disease-free interval for
the most unfavourable subjects (males with lymphocytic infiltration and ostoid pathology) is
between 0-128 and 0-576.

5.2. Advance indicators of HIV infection in infants

We are grateful to Dr. Shengan Lai, University of Miami, for providing this example. A hospital
based prospective study of perinatal infection and human immunodeficiency virus (HIV-1)
by Hutto et al.'® investigated, among other things, the possibility that the CD4 and CDS8
blood serum levels measured in infants at 6 months of age might predict their eventual
development of HIV infection. The data on HIV infection rates and blood serum levels are
displayed in Table IV.

We wish to determine through logistic regression if the CD4 nd CD8 serum levels predict HIV
positivity. Now, although we have coded each covariate at three ordered levels (0, 1,2), the
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Table IV. Data on advance in-
dicator of HIV

CD4 CD8 Proportion
HIV

1/1 (100%)
2/2 (100%)
4/7 (57%)
412 (33%)
1/3 (33%)
2/ (29%)
02 (0%)
0/13  (0%)

[T S I N e =]
— OO~ ONN

investigators preferred to include them in the regression model as qualitative or ‘factor’ variables
rather than as quantitative variables since the actual numerical values of the CD4 and CD8
counts were unavailable. This requires that we split each of CD4 and CD8 into two dummy
variables (0 versus 2, and 1 versus 2) in the regression model. We can specify the model formally
as:

4
]og(1 2 )=y+ Y. Bixijs (25)
- % =1
where, for the jth subject: x,; = 1 if CD4 is at level 0 and 0 otherwise; x,; = 1 if CD4 is at level
1 and O otherwise; x3; = 1 if CD8 1s at level 0 and 0 otherwise; x4; = 1 if CD8 is at level 1 and

0 otherwise.

As is often the case for data sets with small sample sizes or unbalanced structure, we cannot
estimate the regression parameters in model (25) by the maximum likelihood method because the
observed data fall on the boundary of the sample space; one will discover that conventional
software packages are unable to produce any logistic regression output for this model. Neverthe-
less, the observed rates of HIV infection do vary considerably with the serum levels and formal
tests of significance would be useful. The exact conditional distributions of appropriate sufficient
statistics enable us to perform such tests. To determine if the CD8 levels predict HIV infection, we
must test the null hypothesis

Ho: f3=Ba=0.

The sufficient statistic for §; is T, = ¥,x;;Y;, and the sufficient statistic for the constant term is
To =YY, the summation taken over all subjects. An exact test of H, is based on
f(ts,tal B3 = Bs = 0), the null permutational distribution of (T, T,) given that the remaining
sufficient statistics are fixed at their observed values, that is, (To = 14, T, =5, T> = 8).

For testing H,, we use the exact conditional scores test. For each (t3,,) in the sample space of
the conditional distribution, one can compute a conditional score of the form

g = ((t3 ta) — (13, ) T34 (83, ta) — (13, a))’

where uj is the mean of T, p4 is the mean of T, and } 5 4 is the variance—covariance matirx of
f(t3,ts| Bs = Bs = 0). The observed value of (t3,t4) is (6,4), and hence the observed conditional
score is ¢ = 7-293. The critical region for the conditional scores test, E., (defined by equation (19)),
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Table V. P-values for HIV data

Conditional score test CD4 CD8

Exact P-value 0007 00256
Asymptotic P-value 0009 (-0261

thus consists of all (¢3, t,) points in the sample space with conditional scores greater than or equal
to 7-293. The exact p-value is

Pes = ), f(t3,t4| B3 = Ps = 0) = 00256,
Es

while the asymptotic p-value is obtained as the tail area to the right of 7-293 from a chi-square
distribution with 2 degrees of freedom. In Table V we display the exact and asymptotic p-values
for CD4 and CD8, based on the conditional scores tests. Despite the small sample size the exact
and asymptotic results are very similar. The accuracy of the asymptotic results are attributable to
the conditional rather than the unconditional scores statistic being referred to the chi-square
distribution. This example also demonstrates that it is possible to perform asymptotic hypothesis
tests on model parameters, using the scores test, even when the full model cannot be fit by the
maximum likelihood method.

5.3. Schizophrenia and birth complications

We thank Dr. Armando Garsd for providing this example. A case-control study (Garsd'”) was
sought to determine the role of birth complications in people with schizophrenia. The sample
consisted of 7 families with several siblings per family. An individual within a family was classified
either as normal or a person with schizophrenia. There was a ‘birth-complications index’
available for each individual, ranging in value from O (uncomplicated birth) to 15 (severely
complicated birth). The data are shown in Table VI. As a point of clarification we note that there
are no multiple births depicted in this table. For example, the three births listed in Family 1, all
with birth complications indices of 2, and all free of schizophrenia, represent three single births at
three different time points.

Is there a positive correlation between the chance of schizophrenia and the birth-complications
index? The data do indeed suggest some such tendency, but, the numbers are small, and the
magnitude of the effect appears to vary across families. This is an ideal situation for exact logistic
regression on matched sets. By treating each family as a separate matched set, one can model n;;,
the probability of schizophrenia for the jth sibling in the ith family in terms of the birth-
complications index, x;;:

log( By ) =7+ fx;. (26)

1=my

We eliminate the nuisance parameters y;, corresponding to the family effect, by conditioning on
the total number of schizophrenics within each family. We then estimate § by the methods of
Section 3.1. The results are displayed in Table VII.

The exact P-value is based on the conditional scores test defined by equations (13) and (15). The
three asymptotic P-values in the above table have been derived from the likelihood function that
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Table VI. Data on schizophrenia and patient

complications

Family BC index Proportion
with schizophrenia

/1

0/1

1/1 (100%)

1/1 (100%)
1/1 (100%)

(0%)

1/4 (25%)
1/1 (100%)

1 5
1 7 0/1  (0%)
1 6 0/1  (0%)
1 5 01 (0%)
1 3 02 (0%)
1 2 03 (0%)
1 0 0/1 (0%)
g 2 1/1 (100%)
2 0 0/1  (0%)
3 9 1/1 (100%)
3 2 0/1  (0%)
3 1 0/1 (0%)
4 . 1/1 (100%)
4 0 0/4  (0%)
5 6 0/1 (100%)
5 3
5 0
6 3
6 0
7 6
;S 2

(0%)

Table VIL Inference about the beta coefficient for schizophrenia data

Conditional maximum likelihood estimate
Exact 95 per cent confidence interval
Asymptotic 95 per cent confidence interval
Exact P-value (conditional scores)
Asymptotic P-value (scores)

Asymptotic P-value (Wald)

Asymptotic P-value (likelihood ratio)

(0:0223 to 0-741)
(—0-004 to 0-654)

0325

0-0167
0-0129
0-0528
0023

corresponds to model (26) in the usual manner for scores, Wald and likelihood ratio tests,
respectively (see, for example, McCullagh and Nelder!®), with one difference, they derive from the
conditional likelihood function (7) rather than the unconditional likelihood function (2). This
makes the asymptotic results more comparable to the exact ones since we do not lose degrees of
freedom in estimating stratum specific nuisance parameters. The appropriate likelihood equa-
tions for these conditonal asymptotic tests appear in Appendix A of the LogXact'* manual. For
this small data set there are noticeable P-value differences between the three asymptotic tests and
one must rely on the exact conditional scores test to furnish a ‘gold-standard’ P-value. Note also
that this exact test is equivalent to the Cochran-Armitage exact test of trend on stratified
contingency tables (see, for example, Breslow and Day,° Section 4.5) where one regards the data

on each family as a separate stratum.
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Table VIIL. Cross-over data on analgesic
efficacy

Patient Drug Response
sequence P1 P2 P3

1 ABC 0 1 1
7 ABC 0 1 1
2 BCA 0 1 1
8 BCA 0 0 0
3 CAB 1 0 0
9 CAB 1 0 1
4 CBA 1 0 1
10 CBA 1 0 0
=) ACB 0 0 0
11 ACB 0 1 0
6 BAC 1 0 0
12 BAC 0 0 1

5.4. Cross-over clinical trial of analgesic efficacy

The data in Table VIII come from a three-treatment three-period cross-over clinical trial. The
three drugs are A = new drug, B = aspirin, C-placebo. The primary endpoint was analgesic
efficacy, here dichotomized as 0 for relief and 1 for no-relief. See Snapinn and Small'® for
details.

The question is whether the three treatments differ. We answer this question by including
treatment as the primary covariate in a logistic regression model for matched sets. In this
model, we include treatment as an unordered categorical covariate at three levels, and hence,
with two degrees of freedom. We regard each patient as a matched set. Within such a
matched set there are three observed responses, one at each of the three time periods Pl1,
P2 and P3. Now although these responses are all on the same patient, and are therefore
dependent, we assume that we can remove this dependence by appropriate modelling as
in Jones and Kenward.2® For the present data set we assume that we can regard the three
response probabilities within a matched set as independent if they arise in a logistic regression
model that contains a stratum specific constant and covariate terms for treatment and
period effects. Since there are three periods, we capture the period effect with two degrees
of freedom. Technically the model should also include a two degree of freedom covariate
term for the carry-over effect. For this small data set, however, the period effect and the carry-over
effect are aliased, that is, there are insufficient data points to distinguish between the parameters
that correspond to period from those that correspond to carry-over. We may thus specify the
model as:

;i
108(1 ——Jvc- ) =Y+ BiXpij + BaXaij + B3Xaij + BaXaijs (27)
i

where: y; is the stratum effect for the ith matched set (or subject); X4y is a dummy variable that
assumes a value 1 if drug A was administered to subject i in period j,0 otherwise; x,;; is a
dummy variable that assumes a value 1 if drug B was administered to subject i in period j,0
otherwise; x3;; is a dummy variable that assumes a value 1 if period j is P1,0 otherwise; Xqij 18
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Table IX. Analysis of analgesic efficacy data

Type of test Chi-squared value P-value
Likelihood ratio (asymptotic) 8-7378 00127
Wald (asymptotic) 5-0875 00786
Scores (asymptotic) 7-8010 0-0202
Conditional scores (exact) 7-0634 00289

a dummy variable that assumes a value 1 if period j is P2,0 otherwise. The results for the two
degree of freedom test

Ho: 1 =8,=0

that there is no treatment effect are shown in Table IX.

As was the case with example 5.3, the above asymptotic tests all derive from conditional
likelihood function (7) for model (27) rather than the unconditional likelihood function (2). The
conditional likelihood function is free of the stratum specific nuisance parameters, y;. There is
a fairly large discrepancy between the Wald and likelihood ratio tests so that one would prefer to
rely on the exact conditional scores test.

We next computed the two degree of freedom test

Ho: B3 =P,=0

that there is no period effect. The exact conditional scores P-value for this test was (0-8842,
implying that we could drop the two terms that correspond to period from the model (27).
Accordingly, we did drop these two terms and once again tested the hypothesis

Hy: By =4,=0
this time from the reduced model

log (1 L ) =9+ B1Xuij + Baxaij. (28)
= &y
This time the exact conditional scores P-value was 0-026, not very different from the P-value when
we included period in the model, thus confirming that the period effect is not significant. Note
that the above two-degree of freedom exact test for a drug effect in model (28) is the exact
analogue of Cochran’s Q test (for example, see Siegel and Castellan,?! page 170).

Finally, we computed separate exact tests of f; = 0 (P-value equals 0-0159) and B, =0
(P-value equals 0-0972) from model (28). We can regard these two tests as exact extensions of
McNemar’s test, since they deal with the comparison of two repeated measures on each subject,
while adjusting for a third repeated measure through regression.

5.5. Bupenorphine treatment for drug addicts

We thank Dr. Edward Lee, Substance Abuse Treatment Unit, Department of Psychiatry, Yale
University, for providing this example of multiple binary response on five substance abusers. The
five individuals were treated with both the control drug (X = 1) and Bupenorphine (X = 2) at
each of four doses (0, 0125, 0-250, 0-500 mg/m?2). The binary response measured at each does level
was presence/absence of abnormal heartbeat (¥ = 1/0). The data are displayed in Table X.
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Table X. Data on substance abusers and abnor-
mal heartbeat

Patient Dose  Treatment 1 Treatment 2
response response

B WR = LAWK LA WK = WK -
Pt -
] [ae]
L wn

P T O S i i e W e il e | e I i o o B e |

ek b ek ek et ek b et ek ek ek b (D D = O

The question of interest was whether Bupenorphine increased the probability of abnormal
heartbeat relative to the control drug. The data were complicated by the fact that each individual
was treated several times, at different dose levels of both treatments, thereby providing a sequence
of clustered binary responses. We handled this problem by using stratified logistic regression,
regarding each individual as a separate stratum. The model was thus

log (1 2 ) =9 + B1X1ij + Baxazj. (29)
=

where i indexes the strata, i = 1,2...,5,j indexes the different dose levels within each stratum,
j=1,2,...,4,xy; is the jth drug dose in the ith stratum, and x,;; is the jth treatment in the ith
stratum (1 for control drug; 2 for Bupenorphine).

As with several other examples presented in this paper, the maximum likelihood method failed
to produce estimates of the regression coefficients. The exact method, however, based on the
permutation distribution of the sufficient statistics produced parameter estimates as shown in
Table XI.

The exact method reveals that Bupenorphine does indeed induce a statistically significant
increase in abnormal heartbeat, after adjusting for the effects of clustering, and varying dose
levels. The coefficient B, is a trend parameter that measures the amount by which the odds of
abnormal heartbeat increase for a unit increase in the dose. For instance, an increase in the dose
by 0-125 mg/m? increases the odds of abnormal heartbeat by a factor exp(0-021 x 125) = 13-8.
The coefficient f, reveals that the odds of abnormal heartbeat increase by a factor
exp(2:22) = 92, if the patient switches from the control drug to Bupenorphine. This
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Table XI. Analysis of substance abusers data

Parameter Point estimate Exact 95% CI Exact P-value
By 00210 0-00825 to o0 511 %107
B2 222 0-0977 to co 0-0396

interpretation is troublesome at dose 0, however. As one of the referees has noted, switching from
the control drug to the placebo at dose 0 actually amounts to being treated by placebo in either
case, and should have no effect on the heartbeat. Perhaps an interaction term should be included
in the model, but there are too few differences in response between the two treatments to support
such a model.

6. CONCLUSIONS

We have provided a way to analyse small-sample binary data with covariates, and have
illustrated our approach through several examples that one could not analyse accurately by
conventional methods of logistic regression. For data in the form of independent binary observa-
tions, we used the unstratified logistic regression model, and based our inference on appropriate
permutational distributions of the sufficient statistics. For clustered binary data, consisting of
a few experimental units, and repeated binary observations on each unit, we used the stratified
logistic regression model. We treated each experimental unit as a separate stratum or matched
set. The inference on the regression parameters proceeded as before and was based on permuta-
tional distributions of sufficient statistics. The permutational approach for clustered binary data
is a useful complement to the generalized estimating equations (GEE) approach of Zeger and
Liang,?2 for it is valid in small samples while the latter is valid in large samples. We note, however,
that the permutational approach is conditional whereas the GEE approach is marginal, leading
to slightly different interpretations for the parameter estimates.

We have seen that for data sets with small sample sizes or unbalanced structure the conven-
tional maximum likelihood approach may fail, even though the covariates in the model are
statistically significant. The permutational approach on the other hand provides valid inferences
for this situation. Example 5.1 was an instance of failure of the maximum likelihood approch
because of a zero cell count in a 2x2 table formed by the response variable and a binary
covariate. Actually, the maximum likelihood method can fail under even weaker conditions.
There is a fine discussion of these conditions in Santner and Duffy,?? page 234, with many related
references.

In sparse data settings where the maximum likelihood estimates do exist, one can compare the
exact and asymptotic results. Sometimes the two results are similar and at other times they differ
considerably. It would be useful to provide a simple rule of thumb (analogous to Cochran’s
conditions) for identifying when the exact and asymptotic results are likely to be similar. This
research remains to be done however. Another fruitful area for further research is attainment of
accurate asymptotic approximations for conditional distributions of the form (16), their tail areas,
and their moments. Recent work on saddlepoint, Edgeworth and Gibbs—-Skovgaard approxima-
tions by Pierce and Peters?* and Kolassa and Tanner,?® and on Markov chain Monte Carlo
sampling by Geyer and Thompson,?® Diaconis and Sturmfels,>’ and Foster, Mc Donald and
Smith?® show considerable promise in this regard.
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