
Computing the 'Competing Risks'

Modeling Survival Data with Competing Risk Events using SAS Macros

Swapna Deshpande

SP06

Why Competing Risk?

Frequency of studies published on the subject of competing risks within the last 10 years <u>steadily increased</u> over time.

Koller, M et al, Competing Risks and Clinical Community. Statist.Med. 2012

Summary of FDA Public Workshop

The interpretation of overall survival may be confounded by competing risk of mortality, salvage treatments, and crossover..

Outline

- Standard Survival Analysis Techniques
- Concept of Competing Risk (CR) Events
- Analysis techniques in CR setup
 - Estimation of incidence of an event of interest using % CIF (ignoring and accounting for CR)
 - Comparison of incidence among treatment groups using % CIF
 - Assessing effect of covariates on incidence using % PSHREG

Survival Analysis

- Survival Analysis Time to event analysis
- Event of interest :
 - Cancer relapse
 - Myocardial infarction
 - Discharge from hospital
 - Death due to a specific cause
- Survival Function
- Hazard Function

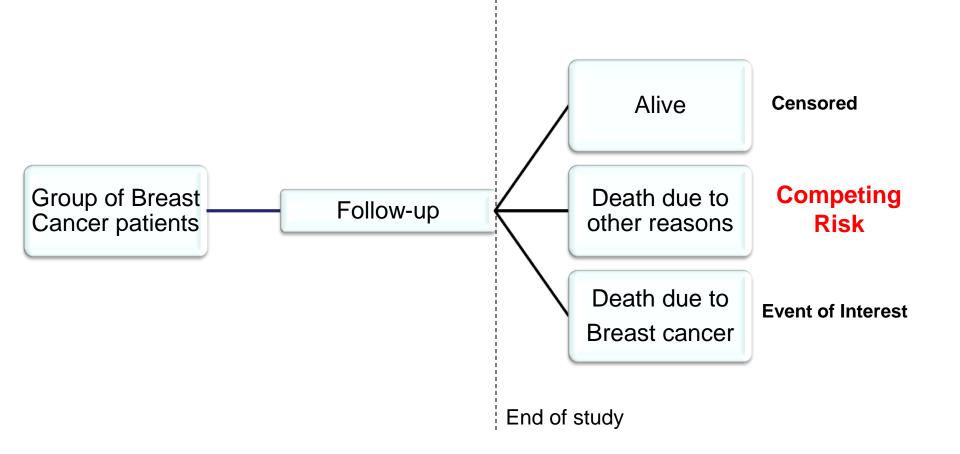
Censoring

Not all subjects enrolled in the study will have experienced the event of interest

- What is censoring ?
- Assumed to have the same probability of experiencing the event of interest (non-informative censoring)
- Standard survival analysis techniques: Assumption of non-informative censoring

Standard Survival Analysis Techniques

Purpose	Method	SAS Proc		
Estimating Survival Function	Kaplan Meier method	Proc lifetest		
Comparison of Survival Functions	Log Rank Test	Proc lifetest		
Assessing effect of covariates	Cox Regression Model	Proc phreg		


Concept of Competing Risk

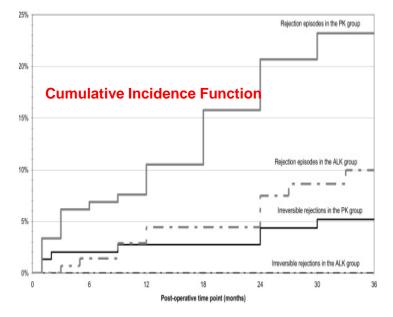
- A cohort of Breast Cancer (BC) patients
- Event of Interest is 'death of a patient due to breast cancer'
- Some deaths due to causes unrelated to the disease.
- Researcher: Is it an event of interest ? No
- Cases to be treated as censored ????

Competing Risk Event

Competing Risk (CR)

- Either precludes the occurrence of another event or
- Alters the probability of occurrence of other event
- Use of classical survival analysis methods lead to a bias

Gooley, TA; Leisenring, W; Crowley, J; Storer, BE, "Estimation of failure probabilities in the presence of competing risks: new representations of old estimators" Statistics in Medicine 1999 pp. 695-706


Here we are...

- Standard Survival Analysis Techniques
- Concept of Competing Risk (CR) Events
- Analysis Techniques in CR setup
 - Estimation of incidence of an event of interest using % CIF (ignoring and accounting for CR)
 - Comparison of incidence among treatment groups using % CIF
 - Assessing effect of covariates using % PSHREG

Cumulative Incidence Function (CIF)

- Kalbfleisch and Prentice (1980) introduced '<u>Cumulative Incidence</u> <u>Function</u>' approach to analyze survival data when CRs exist.
- Cumulative probability of an event of interest over time.
- Also referred as <u>'subdistribution function</u>'

- Two or more groups : To test the <u>difference in the cumulative</u> incidence rates among treatment groups.
- Gray (1988) proposed a modified Chi-square test approach

Gray, R. (1988), A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk. The Annals of Statistics, 16, 1141–1154.

%CIF Macro

- SAS inbuilt macro '%CIF'
- Estimates <u>crude cumulative incidence function</u>.
- Also compares cumulative incidence functions across treatment groups.
- Statement:

%CIF (Data=, Out=, Time=, Status=, Event=, Censored=, Group=, options=)

Test the Effect of Covariates

- Probability of cumulative incidence for subjects with a given set of covariate
- Fine and Gray (1999) and Klein and Andersen (2005) proposed approaches to directly model the effect covariates on CIF.
- Fine and Gray (F&G) method will be discussed.
- Based on proportional hazards model.

% PSHREG

- Developed by researchers from Medical University of Vienna.
- Available in Public Domain
- Implements model proposed by F&G (1999).
- Facilitates to use various options offered by proc phreg.
- Statement: %pshreg (Data=, Time=, Cens=, Failcode=, Cencode=, Varlist=, Cengroup=, Options=);

Website: <u>http://cemsiis.meduniwien.ac.at/en/kb/science-</u> research/software/statistical-software/pshreg/

Example

BYAR Study

- Randomized Clinical Trial (Byar study by Byar and Green, 1980)
- Primary interest To assess the effect of treatment (Rx) on prostate cancer related deaths.
- 502 prostate cancer patients with clinical stage III or IV.
- Randomized to either low or high doses of diethylstilbestrol (DES).

BYAR Study Data

\wedge											
Pat_ID	Stage	Rx	Dtime		status	ag	e	wt	Performance	Lesion	Gleason
1	3	0.2 mg estrogen	72		alive	75	5	76	normal activity	2	8
2	3	0.2 mg estrogen	1		dead - other ca	54	4	116	normal activity	42	
3	3	5.0 mg estrogen	40	dea	ad - cerebrovascula	r 69	Э	102	normal activity	3	9
4	3	0.2 mg estrogen	20	dea	ad - cerebrovascula	r 75	5	94	in bed < 50% daytime	4	8
5	3	placebo	65	삝	alive	67	7	99	normal activity	34	8
6	3	0.2 mg estrogen	24		dead - prostate ca		1	98	normal activity	10	11
7	4	placebo	46		dead - heart or vascular		5	100	normal activity	13	9
8	4	placebo	62		alive		3	114	normal activity	3	9
			-					•		-	
	-		-					•		-	
	-		-	Π				-		-	
	-	<u>.</u>		Π				-		-	
	-			\Box				-		-	
501	4	placebo	49	de	ad - prostate cancer	r 55	5	112	normal activity	4	9
502	3	5.0 mg estrogen	20	dea	ad - cerebrovascula	ar 73	3	88	normal activity	15	10

CR Analysis Dataset

ID	Follow-up (months)	Status	Scenari	o (I)	Scenario (II)		
001	72	Alive	C	0	С	0	
002	1	Dead other cause	C	0	E-CR	2	
003	20	Nen ennen deethe	C	0	С	0	
004	40	Non cancer deaths censored	C	0	С	0	
005	65	Dead Prostate Cancer	E	1	Е	1	
006	24	Dead Prostate Cancer	E	1	Е	1	
					Non cancer d		
				^{gi}	rouped as 'Competing <u>Risk'</u>		
501	34	Dead cerebrovascular	C	0 🤇	E-CR	2	
502	25	Dead heart disease	C	0	E-CR	2	

Event of Interest (E): death due to cancer,

Event of competing risk (E-CR): death due to heart disease, cerebrovascular, other causes etc.

Scenario I : Event and censored without accounting for CR, Scenario II: Event and censored accounting for CR C : Censored

15Oct2013

Incidence of Cancer Deaths

Scenario I	Scenario II
Ignores CR	Accounting for CR
 Subjects alive / Loss to FUP / died due to other causes <u>censored</u> 	 Subjects alive / Loss to FUP / withdrew '<u>censored'</u>
	 Death due to other causes grouped as '<u>CR</u>'.
• KM method	• % CIF macro

% CIF Macro

TIME= dtime,

STATUS=stat,

EVENT=1,

CENSORED=0,

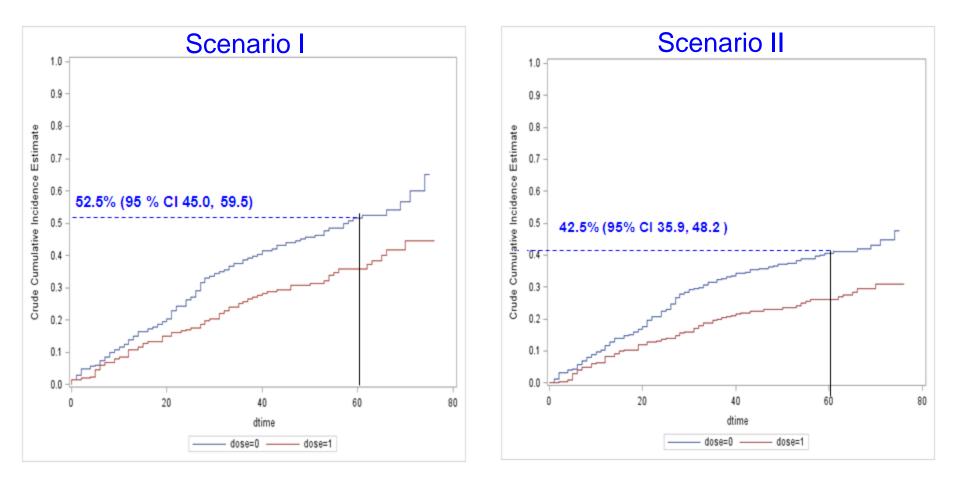
GROUP=dose,

/*** DATA=Byar data set to analyze ********/

/*** dtime: follow-up time in months *********/

/*** Stat: Response at the time of follow-up*****/

/*** EVENT =1: Code for event of interest******/


/***CENSORED=0: code to indicate censoring**/

/***dose' (Rx) requests a CI curve for DES arms**/

TITLE= Cumulative Incidence Function in lower vs. higher DES arms);

Incidence of Disease

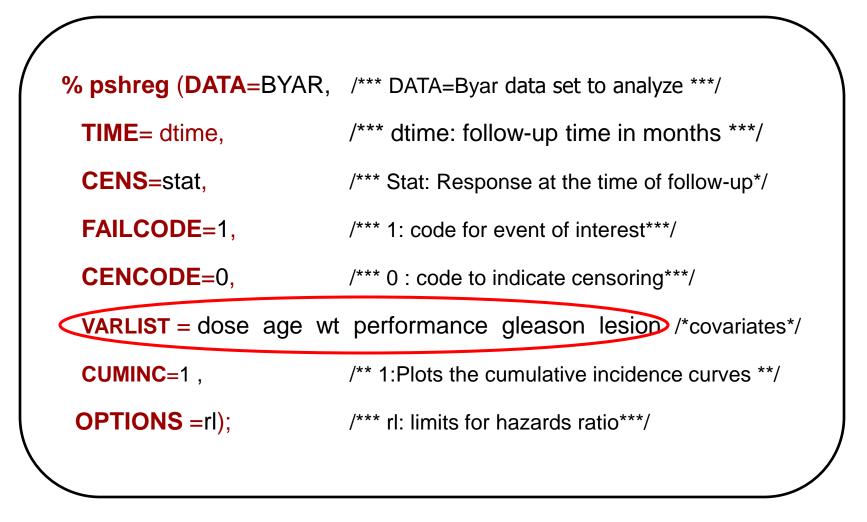
Cumulative incidence of event of interest gets <u>overestimated</u> if CR events are present and ignored during estimation.

PhUSE2013

Testing the Equality of Cumulative Incidence

 Gray's approach to assess the equality between treatment groups in competing risk setting.

Gray's Test for Equality of Cumulative Incidence Functions							
Chi-Square	DF	Probability					
10.885	1	0.0010					


- Incidence of cancer deaths is significantly different (p=0.0010) between two treatment groups.
- By default using %CIF

To Estimate the difference in CIF between Groups with Covariates

- A set of covariates as age, weight, performance, Gleason score and lesion.
- % pshreg macro directly models the difference in CIF in presence of covariates.

% PSHREG Macro

Output of % pshreg macro

The PSHREG macro: Fine-Gray model

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

		Parameter	Standard StdErr				Hazard 95% Hazard Ratio			
Parameter	DF	Esti∎ate	Error	Ratio	Chi-Square	Pr > ChiSq	Rat io	Confidenc	e Li∎its Label	
DOSE	1	-0.60268	0.15523	0.994	15.0742	0.0001	0.547	0.404	0.742	
age	1	-0.02084	0.00992	0.952	4.4138	0.0356	0.979	0.961	0.999 age	
٨t	1	-0.00848	0.00569	0.989	2.2147	0.1367	0.992	0.981	1.003 wt	
hx	1	-0.20670	0.16291	1.009	1.6098	0.2045	0.813	0.591	1.119 hx	
performance	1	0.28631	0.24062	1.052	1.4159	0.2341	1.332	0.831	2.134	
gleason	1	0.89924	0.16689	1.001	29.0348	<.0001	2.458	1.772	3.409	
lesion	1	0.97633	0.18373	0.984	28.2364	<.0001	2.655	1.852	3.805	

Quick Recap

Purpose	Method	SAS Tool		
Incidence estimation	CIF	% CIF		
Comparison Incidence	Gray Test	% CIF		
Assessing effect of covariates	Fine and Gray method	% PSHREG		

Conclusion

Estimating disease incidence accurately is a key factor for successful drug development programme.

Presence of competing risks may hamper the estimation of true disease incidence.

Disease incidence gets overestimated if presence of competing risks is ignored during analysis.

References

- Gray, R. (1988), A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk. *The Annals of Statistics*, 16, 1141–1154.
- Fine, J. and Gray, R. (1999), A Proportional Hazards Model for the Subdistribution of a Competing Risk. *Journal of the American Statistical Association*, 94, 496–509.
- Pintilie, M. (2006), Competing Risks: A Practical Perspective, John Wiley and Sons, Ltd., Chichester.
- Kim, H. (2007), Cumulative Incidence in Competing Risks Data and Competing Risks Regression Analysis. *Clin Cancer Res*;13:559-565.
- Gooley, T., Leisenring W., Crowley J, and Storer, B. (1999), Estimation of Failure Probabilities in the Presence of Competing Risks: New Representations of Old Estimators. *Statist. Med.*18, 695-706.
- Kohl, M. and Heinze, G., (2012), PSHREG: A SAS® macro for proportional and nonproportional substribution hazards regression with competing risk data.

Thank-You

Contact Author: Swapna Deshpande swapna.deshpande@cytel.com